
Session-ocaml: a Session-based Library with

Polarities and Lenses

Keigo Imai1, Nobuko Yoshida2, and Shoji Yuen3

1 Gifu University, Japan
2 Imperial College London, UK

3 Nagoya University, Japan

Abstract. We propose session-ocaml, a novel library for session-typed
concurrent/distributed programming in OCaml. Our technique solely
relies on parametric polymorphism, which can encode core session type
structures with strong static guarantees. Our key ideas are: (1) polarised
session types, which give an alternative formulation of duality enabling
OCaml to automatically infer an appropriate session type in a session
with a reasonable notational overhead; and (2) a parameterised monad
with a data structure called ‘slots’ manipulated with lenses, which can
statically enforce session linearity and delegations. We show applications
of session-ocaml including a travel agency usecase and an SMTP protocol.

1 Introduction

Session types [5], from their origins in the 𝜋-calculus [17], serve as rigorous
specifications for coordinating link mobility in the sense that a communication
link can move among participants, while ensuring type safety. In session type
systems such mobility is called delegation. Once the ownership of a session is
delegated (transferred) to another participant, it cannot be used anymore at the
sender side. This property is called linearity of sessions and appears indispensable
for all session type systems.

Linearity of session channels, however, is a major obstacle to adopt session
type disciplines in mainstream languages, as it requires special syntax extensions
for session communications [9], or depends on specific language features, such
as type-level functions in Haskell [11, 16,20,26], and affine types in Rust [13], or
even falling back on run-time and dynamic checking [7,8,22,27]. For instance, a
common way in Haskell implementations is to track linear channels using an extra
symbol table which denotes types of each resource conveyed by a parameterised
monad. A Haskell type for a session-typed function is roughly of the form:

𝑡1 → · · · → M {𝑐1 ↦→ 𝑠1, 𝑐2 ↦→ 𝑠2, · · ·} {𝑐1 ↦→ 𝑠′
1, 𝑐2 ↦→ 𝑠′

2, · · ·} 𝛼

where M is a monad type constructor of arity three, 𝛼 is a result type and the two
{· · ·} are symbol tables before (and after) evaluation which assign each channel
𝑐𝑖 to its session type 𝑠𝑖 (and 𝑠′

𝑖 respectively). This symbol table is represented at
the type level, hence the channel 𝑐𝑖 is not a value, but a type which reflects an
identity of a channel. Since this static encoding is Haskell-specific using type-level
functions, it is not directly extendable to other languages.

2 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

This paper proposes the session-ocaml library, which provides a fully static
implementation of session types in OCaml without any extra mechanisms or
tools (i.e. sessions are checked at compile-time). We extend the technique posted
to the OCaml mailing list by Garrigue [4] where linear usage of resources is
enforced solely by the parametric polymorphism mechanism. According to [4],
the type of a file handle guarantees linear access to multiple resources using
a symbol table in a monad-like structures. Adapting this technique to session
types, in session-ocaml, multiple simultaneous sessions are statically encoded
in a parameterised monad. More specifically, we extend the monad structure
to a slot monad and the file handles to lenses. The slot monad is based on a
type (𝑝,𝑞,𝑎)monad (hereafter we use postfix type constructor of OCaml) where
𝑝 and 𝑞 are called slots which act like a symbol table. Slots are represented as
a sequence of types represented by nested pair types 𝑠1 *(𝑠2 * · · ·). Lenses [15]
are combinators that provide access to a particular element in nested tuples and
are used to manipulate a symbol table in the slot monad. These mechanisms can
provide an idiomatic way (i.e. code does not require interposing combinators to
replace standard syntactic elements of functional languages) to declare session
delegations and labelled session branching/selections with the static guarantee of
type safety and linearity (unlike FuSe [22] which combines static and dynamic
checking for linearity, see § 5).

To enable session-type inference solely by unification in OCaml, session-ocaml
is equipped with polarised session types which give an alternative formulation of
duality (binary relation over types which ensures reciprocal use of sessions). In
a polarised session type (𝑝,𝑞) sess, the polarity 𝑞 is either serv (server) or cli

(client). The usage of a session is prescribed in the protocol type 𝑝 which provides
an objective view of a communication based on a communication direction of req
(request; client to server) and resp (response; server to client). For example, the
protocol type for sending of a message type ’v from client to server is [`msg of

req * 'v * 's] and the opposite is [`msg of resp * 'v * 's]. Duality is not necessary
for protocol types as it shows a protocol common to both ends of a session rather
than biased by either end. Then the session type inference can be driven solely
by type unification which checks whether a protocol matches its counterpart
or not. For instance, the dual of (𝑝, cli) sess is (𝑝, serv) sess and vice versa.
When a session is being initiated, polarities are assigned to each end of a session
according to the primitives used, namely cli for the proactive peer and serv for
the passive peer. The protocol types also provide a usual prefixing declaration of
session types, which is more human-readable than FuSe types [22] (see § 5).

The rest of the paper is as follows. Section 2 outlines programming with
session-ocaml. Section 3 shows the library design with the polarised session
type and the slot monads. In Section 4, we present two examples, a travel
agency usecase and SMTP protocol implementations. Section 5 discusses com-
parisons with session type implementations in functional languages. Section 6
concludes and discusses further application of our technique. Technical report [10]
includes the implementation of session-ocaml modules and additional examples.
Session-ocaml is available at https://github.com/keigoi/session-ocaml.

https://github.com/keigoi/session-ocaml

Session-ocaml: a Session-based Library with Polarities and Lenses 3

Listing 1 The xor server and its client
1 open Session0
2 let xor_ch = new_channel ();;
3 Thread.create (fun () ->
4 accept_ xor_ch (fun () ->
5 let%s x,y = recv () in
6 send (xor x y) >>

7 close ())) ();;
8 connect_ xor_ch (fun () ->
9 send (false,true) >>

10 let%s b = recv () in
11 print_bool b;
12 close ()) ()

2 Programming with session-ocaml

In this section, we overview session-typed programming with session-ocaml and
summarise communication primitives in the library.

Send and receive primitives Listing 1 shows a server and client which
communicate boolean values. The module Session04 introduces functions of
session-ocaml in the scope. xor_ch (line 2) is a service channel (or shared chan-
nel) that is used to start communication by a client connecting (connect_) to the
server waiting (accept_) at it.5 The server (lines 3-7) receives (recv) a pair of
booleans, then calculates the exclusive-or of these values, transmits (send) back
the resulting boolean, and finishes the session (close). These communication
primitives communicate on an implicit session endpoint (or session channel)
which is connected to the other endpoint. For inferring session types by OCaml,
communication primitives are concatenated by the bind operations >> and >>= of
a parameterised monad [1] which conveys session endpoints. The syntax let%s

pat = 𝑒1 in 𝑒2 binds the value returned by 𝑒1 to the pattern pat and executes
𝑒2, which is shorthand for 𝑒1 >>= fun pat -> 𝑒2 (the % symbol indicates a syntax
extension point in an OCaml program). The client (lines 8-12) sends a pair of
boolean, receives from the server and finishes the session, as prescribed in the
following type. These server and client behaviours are captured by the protocol
type argument of the channel type inferred at xor_ch as follows:

[`msg of req * (bool * bool) * [`msg of resp * bool * [`close]]] channel

The protocol type is the primary language of communication specification in
session-ocaml. Here, [`msg of 𝑟 * 𝑣 * 𝑝] is a protocol that represents commu-
nication of a message of type 𝑣 before continuing to 𝑝. 𝑟 ∈ {req,resp} indicates
a communication direction from client to server and vice versa, respectively.
[`close] is the end of a session. Thus the above type indicates that by a session
established at xor_ch, (1) the server receives a request of type bool * bool and
then (2) sends a response of type bool back to the client.

Branching and recursion A combination of branching and recursion provides
various useful idioms such as exception handling. As an example, Listing 2 shows
a logical operation server. The protocol type inferred for log_ch is:
4 The suffix 0 means that it only uses the slot 0 (see later in this section).
5 The suffixed underscore means that they run immediately instead of returning a
monadic action (see later).

4 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

Listing 2 A logical operation server
1 open Session0
2 type binop = And | Or | Xor | Imp
3 let log_ch = new_channel ()
4 let eval_op = function
5 | And -> (&&) | Or -> (||)
6 | Xor -> xor
7 | Imp -> (fun a b -> not a || b)
8 let rec logic_server () =
9 match%branch0 () with

10 | `bin -> let%s op = recv () in
11 let%s x,y = recv () in
12 send (eval_op op x y) >>=
13 logic_server

14 | `fin -> close ();;
15

16 Thread.create
17 (accept_ log_ch logic_server) ();;
18 connect_ log_ch (fun () ->
19 [%select0 `bin] >>
20 send And >>
21 send (true, false) >>
22 let%s ans = recv () in
23 (print_bool ans;
24 [%select0 `fin] >>
25 close ())) ()

[`branch of req * [`bin of [`msg of req * binop *
[`msg of req * (bool * bool) * [`msg of resp * bool * 'a]]]

|`fin of [`close]]] as 'a

[`branch of 𝑟 * [· · · |`lab𝑖 of 𝑝𝑖 | · · ·]] represents a protocol that branches to
𝑝𝑖 when label lab𝑖 is communicated. Here 𝑟 is a communication direction. 𝑡 as

'a is an equi-recursive type [24] of OCaml that represents recursive structure
of a session where 'a in 𝑡 is instantiated by 𝑡 as 'a. Lines 8-14 describe the
body of the server. It receives one of the labels bin or fin, and branches to a
different protocol. match%branch0 () with | · · · | `labi -> 𝑒𝑖 | · · · is the syntax for
branching to the expression 𝑒𝑖 after label lab𝑖 is received. Upon receipt of bin,
the server receives requests for a logical operation from the client (type binop

and bool * bool), sends back a response and returns to the branch (note that
the server is recursively defined by let rec). In the case of fin, the session is
terminated. [%select0 `𝑙𝑎𝑏] is a syntax to select one of branches with a label 𝑙𝑎𝑏.6
A client using selection is shown in lines 18-25: it selects the label bin, requests
conjunction, and selects fin; then the session ends.

For the branching primitive on arbitrary labels, session-ocaml uses OCaml
polymorphic variants and syntax extensions. By using equi-recursive types, re-
cursive protocols are also directly encoded into OCaml types.

Link mobility with delegation Link mobility with session delegation enables
one to describe a protocol where the communication counterpart dynamically
changes during a session. A typical pattern utilising delegation incorporates a
main thread accepting a connection and worker threads doing the actual work to
increase responsiveness of a service.

In session-ocaml, a program using delegation handles multiple sessions simul-
taneously. We explicitly assign each session endpoint to a slot using slot specifiers
_0, _1, · · · which gives an idiomatic way to use linear channels. Listing 3 shows
an example of a highly responsive server using delegation. The server receives
6 Here the bracket is another form of a syntax extension point applied to an expression
(see the OCaml manual).

Session-ocaml: a Session-based Library with Polarities and Lenses 5

Listing 3 A highly responsive server using delegation (log_ch is from Listing 2.)
1 open SessionN
2 let worker_ch = new_channel ()
3 let rec main () =
4 accept log_ch ~bindto:_0 >>
5 connect worker_ch ~bindto:_1 >>
6 deleg_send _1 ~release:_0 >>
7 close _1 >>= main
8 let rec worker () =
9 accept worker_ch ~bindto:_1 >>

10 deleg_recv _1 ~bindto:_0 >>
11 close _1 >>
12 logic_server () >>= worker;;
13

14 for i = 0 to 5 do
15 Thread.create (run worker) ()
16 done;;
17 run main ()

repeated connection requests on channel log_ch, consisting of the main thread
and six worker threads. The module SessionN provides slot specifiers and accom-
panying communication primitives, where the suffix N means that it can handle
on arbitrary number of sessions. The main thread (lines 3-7) accepts a connection
from a client (accept) with log_ch and assigns the established session to slot 0
(~bindto:_0). 7 Next, it connects (connect) to a worker waiting for delegation at
channel worker_ch (line 2) and assigns the session to slot 1 (~bindto:_1). Finally it
delegates the session with the client to the worker (deleg_send), then ends the
session with the worker and accepts the next connection. The worker thread
(lines 8-12) receives the delegated session from the main thread (deleg_recv) and
assigns the session to slot 0, then continues to logic_server (Listing 2). Here,
Session0 module used by logic_server implicitly allocates the session type to slot
0, hence can be used with SessionN module. Line 14 starts the main thread and
workers. Here run is a function that executes session-ocaml threads.

The protocol type of worker_ch is inferred as follows:
[`deleg of req * (logic_p, serv) sess * [`close]]

Here logic_p is the protocol type of log_ch and [`deleg of 𝑟 * 𝑠 * 𝑝] is the dele-
gation type. 𝑟 is a communication direction, 𝑠 is a polarised session type (a type
with protocol and polarity which we explain next) for the delegated session and
𝑝 is a continuation. By inferring the protocol types, session-ocaml can statically
guarantee safety of higher-order protocols including delegations.

The polarised session types Communication safety is checked by matching
each protocol type inferred at both ends. The polarised session type (𝑝, 𝑞) sess

given to each endpoint plays a key role for protocol type inference. Here 𝑝 is a
protocol type, and 𝑞 ∈ {serv,cli} is the polarity determined at session initiation.
serv is assigned to the accept side and cli to the connect side. serv and cli are
dual to each other.

The polarised session type gives a simple way to let the type checker infer
a uniform protocol type according to a communication direction and a polarity
assigned to the endpoint. For example, as we have seen, we deduce resp (re-
sponse) from server transmission (send) and client reception (recv). Table 1 shows
correspondences between polarities and communication directions.
7 ~arg:𝑒 is a labelled argument 𝑒 for a named parameter arg.

6 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

Table 1. Correspondence between polarities and communication directions
send select deleg_send recv branch deleg_recv

cli req req req resp resp resp
serv resp resp resp req req req

Fig. 1. Session type changes in xor_server

To track the entire session, a polarised session type changes in its protocol part
as a session progresses. Fig. 1 shows changes of the session type in slot 0 of the xor
server (here we use the SessionN module). The server first accepts a connection
and assigns the session type to slot 0, where the type before acceptance is empty.
After the subsequent reception of the pair of booleans and transmission of the
xor values of those booleans, req and resp are consumed, and becomes empty again
at the end of the session. Similar type changes occur on both main and worker

and their types would be:
unit -> (empty * (empty * 'ss), 'tt, 'a) session

Here the type (𝑠, 𝑡, 𝑎) session specifies that it expects slot sequence 𝑠 at the
beginning, and returns another slot sequence 𝑡 and a value of type 𝑎. The type
empty * (empty * 'ss) denotes that slot 0 and 1 are empty at the beginning, and
since they never return the answer (i.e. the recursion runs infinitely), the rest of
types 'tt and 'a are left as variables.

The type of logic_server in Listing 2 has a session type:
((logic_p, serv) sess * 'ss, empty * 'ss, unit) session

Here logic_server expects a session assigned at slot 0 before it is called, hence
it expects the session type (logic_p, serv)sess in its pre-type. A difference from
main and worker above is that since each of them establishes or receives sessions
by their own (by using accept, connect or deleg_recv), they expect that slots 0
and 1 are empty.

Table 2 shows the type and communication behaviour before and after the
execution of each session-ocaml communication primitive. Each row has a pre-
type (the type required before execution) and post-type (the type guaranteed after
execution). The protocol type at serv is obtained by replacing req with resp and
resp with req. For example, the session send _𝑛 𝑒 has pre-type ([`msg of req * 𝑣

* 𝑝], cli) sess at cli and ([`msg of resp * 𝑣 * 𝑝], serv) sess at serv where _𝑛
is a slot specifier, 𝑒 is an expression, 𝑣 is a value type and 𝑝 is a protocol type.

Session-ocaml: a Session-based Library with Polarities and Lenses 7

Table 2. session-ocaml primitives and protocol types

Primitive Pre-type (at cli*1) Post-type Synopsis

send _𝑛 𝑒 [`msg of req * 𝑣 * 𝑝] 𝑝 sending 𝑒 : 𝑣 at slot n
let%s pat = recv _n [`msg of resp * 𝑣 * 𝑝] 𝑝 Reception at slot n,
in · · · binding to pattern 𝑝𝑎𝑡 : 𝑣

[%select _𝑛 `labi] [`branch of req * 𝑝𝑖 Select label lab𝑖 at slot n
[> `lab𝑖 of 𝑝𝑖]]

match%branch _𝑛 with [`branch of resp * 𝑡 Branch at 𝑛 with labels
|`lab0 -> 𝑒0 [`lab0 of 𝑝0 lab𝑖 (protocol type 𝑝𝑖

| · · · | · · · is that of pre-type of 𝑒𝑖;
|`labm -> 𝑒𝑚 |`lab𝑚 of 𝑝𝑚]] 𝑡 is a post-type of all 𝑒𝑖)
deleg_send _𝑛 𝑛:[`deleg of req * 𝑠 * 𝑝]*2 𝑛:𝑝 Delegate session at 𝑚

~release:_𝑚 𝑚:𝑠 *2 𝑚:empty *3 with type 𝑠 along 𝑛

deleg_recv _𝑛 𝑛:[`deleg of resp * 𝑠 * 𝑝]*2 𝑛:𝑝 Reception of delegation
~bindto:_𝑚 𝑚:empty *3 𝑚:𝑠 *2 along 𝑛 and assign it to 𝑚

close _𝑛 [`close] empty *3 Close session at slot 𝑛

𝑠 is a polarised session type, _𝑛 and _𝑚 are slot specifiers, 𝑒 is an expression of a base type,
ch is a service channel, `lab is a polymorphic variant and pat is a binding pattern.

*1: At serv, req and resp are exchanged; *2: 𝑠 is a session type (not a protocol type);
*3: Slot type changes to empty.

Primitive Pre-type Post-type Synopsis

accept 𝑐ℎ ~bindto:_𝑛 empty (𝑝, serv) sess Accept a connection at channel 𝑐ℎ; assign
a new session of polarity serv to 𝑛

connect 𝑐ℎ ~bindto:_𝑛 empty (𝑝, cli) sess Connect to channel 𝑐ℎ; assign a new ses-
sion of polarity cli to 𝑛

Selection [%select _𝑛] has open polymorphic variant type [>. . .] in pre-type to
simulate subtyping of the labelled branches.

3 Design and implementation of session-ocaml

In this section, we first show the design of polarised session types associated with
communication primitives (§ 3.1); then introduce the slot monad which conveys
multiple session endpoints in a sequence of slots and constructs the whole session
type for a session (§ 3.2). In § 3.3, we introduce the slot specifier to look up
a particular slot in a slot sequence with lenses which are a polymorphic data
manipulation technique known in functional programming languages. We present
the syntax extension for branching and selection, and explain a restriction on
the polarised session types. This section mainly explains the type signatures of
the communication primitives. Implementation of the communication behaviours
is left to [10].

8 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

3.1 Polarity polymorphism

The polarity polymorphism is accompanied within all session primitives in that the
appropriate direction type is assigned according to the polarity. This resolves a
trade-off of having two polarised session types for one transmission. For instance,
a transmission of a value could have two candidates, [`msg of req * 'v * 's] and
[`msg of resp * 'v * 's] but they are chosen according to the polarity from which
the message is sent. In order to relate the polarities to the directions, cli and
serv are defined by type aliases as follows:

type cli = req * resp type serv = resp * req

For each communication primitive, we introduce fresh type variables 𝑟req and
𝑟resp representing the communication direction, and put 𝑟req *𝑟resp as the polarity
in its session type. When its polarity is cli, we put 𝑟req for req and 𝑟resp for resp,
while when it is serv, we put 𝑟req for resp and 𝑟resp for req. For example, the
pre-type of send is ([`msg of 'r1*'v*'p],'r1*'r2) sess and that of recv is ([`msg of '

r2*'v*'p],'r1*'r2) sess. The same discipline applies to branching and delegation.
The actual typing is deferred to the following subsections.

3.2 The slot monad carrying multiple sessions

The key factor to achieve linearity is to keep session endpoints securely inside a
monad. In session-ocaml, multiple sessions are conveyed in slots using the slot
monad of type

(𝑠0 * (𝑠1 * · · ·), 𝑡0 * (𝑡1 * · · ·), 𝛼) session

which denotes a computation of a value of type 𝛼, turning each pre-type 𝑠𝑖 of
slot 𝑖 to post-type 𝑡𝑖. We refer to slots before and after computation as pre-
and post-slots, respectively. The type signature of the slot monad is shown in
Listing 4. The operators >>= and >> (lines 3-4) compose computation sequentially
while propagating type changes on each slot by demanding the same type 'q

in the post-slots on the left-hand side and the pre-slots on the right-hand side.
Usually they construct compound session types via unification. For example, in
send And >> send (true, false) (from Listing 2) the left hand side (send Add) has
the following type:
(([`msg of req * binop * 'p1], cli) sess * 'ss1, ('p1, cli) sess * 'ss1, unit) session

While the type of the right hand side (send (true, false)) is:
(([`msg of req * (bool*bool) * 'p2], cli) sess * 'ss2, ('p2, cli) sess * 'ss2, unit) session

By unifying the post-type in the preceding monad with the pre-type in the
following monad (and the rest of slots 'ss1 with 'ss2), the bind operation produces
a chain of protocol type in the pre-slots as follows:
(([`msg of req * binop * [`msg of req * (bool*bool) * 'p2]], cli) sess * 'ss2,

('p2, cli) sess * 'ss2, unit) session

In line 5, run executes the slot monad and requires all slots being empty before
and after execution, thus it precludes use of unallocated slots, and mandates that
all sessions are finally closed (which corresponds to the absence of contraction

Session-ocaml: a Session-based Library with Polarities and Lenses 9

Listing 4 The slot monad
1 type ('p,'q,'a) session and empty and all_empty = empty * 'a as 'a
2 val return : 'a -> ('p,'p,'a) session
3 val (>>=) : ('p,'q,'a) session -> ('a -> ('q,'r,'b) session) -> ('p,'r,'b) session
4 val (>>) : ('p,'q,'a) session -> ('q,'r,'b) session -> ('p,'r,'b) session
5 val run : (all_empty,all_empty,unit) session -> unit

Table 3. Types for slot specifiers

Specifier Type
_0 ('a, 'b, 'a * 'ss, 'b * 'ss) slot
_1 ('a, 'b, 's0 * ('a * 'ss), 's0 * ('b * 'ss)) slot
_2 ('a, 'b, 's0 * ('s1 * ('a * 'ss)), 's0 * ('s1 * ('b * 'ss))) slot
_𝑛 ('a, 'b, 's0*(· · ·*('s𝑛−1*('a*'ss))· · ·), 's0*(· · ·*('s𝑛−1*('b*'ss))· · ·)) slot

in linear type systems). The type all_empty (line 1) is a type alias for OCaml
equi-recursive type empty * 'a as 'a, 8 enabling use of arbitrarily many slots.

3.3 Lenses focusing on linear channels

In order to provide access to session endpoints conveyed inside a slot monad,
we apply lenses [15] to to slot specifiers _0, _1, · · · which are combinators to
manipulate a polymorphic data structure. The following shows the type of a slot
specifier which modifies slot 𝑛 of a slot sequence:
type ('a, 'b, 's0 *(· · ·('s𝑛−1 *('a *'ss))· · ·), 's0 *(· · ·('s𝑛−1 *('b *'ss))· · ·)) slot

The type says that it replaces the type 'a of slot 𝑛 in the slot sequence 's0

*(· · ·('s𝑛−1 *('a *'ss))· · ·) with 'b and the resulting sequence type becomes to
's0 *(· · ·('s𝑛−1 *('b *'ss))· · ·). The type of each slot specifier (_0, _1, · · ·) is shown
in Table 3.

Listing 5 exhibits type signatures of accept, connect, close, send, recv, deleg_send
and deleg_recv which are compiled from lenses, the polarised session types (§ 3.1),
slot monads (§ 3.2), and pre- and post-types in Table 2 (§ 2). Note that bindto:

and release: are named parameters of a primitive.
accept and connect (lines 1-4) assign a new session channel to the empty slot,

whereas close (lines 5-6) finishes the session and leave the slot empty again. send
and recv (lines 7-10) proceed the protocol type by removing a `msg prefix.

deleg_send and deleg_recv (lines 11-16) update a pair of slots; one is for the
transmission/reception and the other is for the delegated session. To update
the slots twice, they take a pair of slot specifiers which share an intermediate
slot sequence 'mid. They embody an aspect of linearity: deleg_send releases the
ownership of the delegated session by replacing the slot type to empty, while
deleg_recv allocates another empty slot to the acquired session.
8 In order to have such a type, we compile the code with the -rectypes option. If we
chose types for slots using objects or polymorphic variants, there is no need to use
this option.

10 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

Listing 5 Signatures for communication primitives in session-ocaml

1 val accept : 'p channel -> bindto:(empty, ('p, serv) sess, 'pre, 'post) slot
2 -> ('pre, 'post, unit) session
3 val connect : 'p channel -> bindto:(empty, ('p, cli) sess, 'pre, 'post) slot
4 -> ('pre, 'post, unit) session
5 val close : (([`close],'r1*'r2) sess, empty, 'pre, 'post) slot
6 -> ('pre, 'post, unit) session
7 val send : (([`msg of 'r1*'v*'p],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'post) slot
8 -> 'v -> ('pre, 'post, unit) session
9 val recv : (([`msg of 'r2*'v*'p],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'post) slot

10 -> ('pre, 'post, 'v) session
11 val deleg_send :
12 (([`deleg of 'r1*'s*'p],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'mid) slot
13 -> release:('s, empty, 'mid, 'post) slot -> ('pre, 'post, 'v) session
14 val deleg_recv :
15 (([`deleg of 'r2*'s*'p],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'mid) slot
16 -> bindto:(empty, 's, 'mid, 'post) slot -> ('pre, 'post, 'v) session
17 val select_left : (([`branch of 'r1 * [>`left of 's1]],'r1*'r2) sess,
18 ('s1,'r1*'r2) sess, 'pre, 'post) slot -> ('pre, 'post, unit) session
19 val select_right : (([`branch of 'r1 * [>`right of 's2]],'r1*'r2) sess,
20 ('s2,'r1*'r2) sess, 'pre, 'post) slot -> ('pre, 'post, unit) session
21 val branch2 : (([`branch of 'r2 * [`left of 's1 | `right of 's2]],'r1*'r2) sess,
22 ('s1,'r1*'r2) sess, 'pre, 'mid1) slot * (unit -> ('mid1, 'post, 'a) session)
23 -> (([`branch of 'r2 * [`left of 's1 | `right of 's2]],'r1*'r2) sess,
24 ('s2,'r1*'r2) sess, 'pre, 'mid2) slot * (unit -> ('mid2, 'post, 'a) session)
25 -> ('pre, 'post, 'a) session

The primitives for binary selection select_left, select_right and branching
branch2 (lines 17-25) communicate left and right labels. branch2 takes a pair of
continuations as well as a pair of slot specifiers. According to the received label,
one of the continuations is invoked after the pre-type of the invoked continuation
is assigned to the corresponding slot.

Finally, we present how to embed slot type changes into a pair of slot sequences
in a slot monad where the position of the slot is specified by applying a slot
specifier. In each type signature, the first and second type arguments of type
slot prescribes how a slot type changes. The third and fourth arguments do not
specify a slot in the slot sequence conveyed by the slot monad. For example, the
type of function application close _1 is given by the following type substitution:
(change of the slot type specified by close)
'a ↦→ ([`close],'r1*'r2) sess, 'b ↦→ empty,

(change of the slot sequence type specified by _1)
'pre ↦→ 's0 * ([`close],'r1*'r2) sess * 'ss, 'post ↦→ 's0 * (empty * 'ss)

And the type completing the session at slot 1 is:
close _1: ('s0 * ([`close],'r1*'r2) sess * 'ss), 's0 * (empty * 'ss), unit) session

A note on delegation and slot assignment The delegation [`deleg of 𝑟 * 𝑠

* 𝑝] distinguishes polarity in the delegated session 𝑠. This results in a situation
where two sessions exhibiting the same communicating behaviour cannot be

Session-ocaml: a Session-based Library with Polarities and Lenses 11

delegated at a single point in a protocol, if they have different polarities from
each other. It is illustrated by the following (untypeable) example.
if b then connect ch1 ~bindto:_1 >> deleg_send _0 ~release:_1

else accept ch2 ~bindto:_1 >> deleg_send _0 ~release:_1

Recall that connect yields a cli endpoint while accept gives a serv. Due to the
different polarities in the delegated session types, the types of then and else clause
conflict with each other, even if they have the identical behaviour. In [32], where
polarity is not a type but a syntactic construct, such a restriction does not exist.
A similar restriction exists in GV [30] which has polarity in end (end! and end?).

In principle, it is possible to automatically assign numbers to slot specifiers
locally in a function instead of writing them explicitly. However, since sequential
composition of the session monad requires each post- and pre-type to match with
each other, the global assignment of slot specifiers would require a considerable
amount of work and can be hard to predict its behaviour. As shown in Listing 3,
one can handle two sessions by just using two slot specifiers.

Syntax extension for arbitrarily labelled branch Since the OCaml type
system does not allow to parameterise type labels (polymorphic variants), we
provide macros for arbitrarily-labelled branching. Listing 6 provides helper
functions for the macros. For selection, the macro [%select _𝑛 `labi] is expanded
to _select _𝑛 (fun x -> `labi(x)), where the helper function _select transmits
label labi on the slot 𝑛. match%branch _𝑛 with | `lab1 -> 𝑒1 | · · · | `lab𝑘 -> 𝑒𝑘 is
expanded to:
_branch_start _𝑛 ((function |`lab1(p1),q -> _branch _𝑛 (p1,q) (𝑒1) | · · ·

|`lab𝑘(pk),q -> _branch _𝑛 (pk,q) (𝑒𝑘))
: [`lab𝑖 of 'p1|· · ·|`lab𝑘 of 'pk]*'x -> 'y)

The helper functions _branch_start and _branch have the type shown in Listing 6.
The anonymous function will have type

[`lab1 of 𝑝1 | · · · | `lab𝑘 of 𝑝𝑘] * 𝑞 -> (pre, post, 𝑣) session

where 𝑞 is the polarity and 𝑝𝑖 is the protocol type in the pre-type at slot 𝑛 in
𝑒𝑖. When a label lab𝑖 (𝑖 ∈ {1 . . . 𝑘}) is received, _branch_start _𝑛 𝑓 passes a pair
of witness `lab𝑖(p𝑖) and q of a polarised session type (p𝑖, q) sess to the function
𝑓 . The anonymous function extracts the witness and by _branch it rebuilds the
session type ('p𝑖,'q) sess and passes the session to the continuation 𝑒𝑖 as the
pre-type. The type annotation [`lab𝑖 of 'p1|· · ·|`lab𝑘 of 'pk]*'x -> 'y erases the
row type variable [<· · ·] generated by the anonymous function. The annotation
is necessary because the row type variable turns into a useless monomorphic row
type variable [_<· · ·] in the inferred protocol type. This may cause a problem
while compiling since the compiler requires monomorphic type variables to not
escape from compilation units.

12 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

Listing 6 The helper functions for branching/selection with arbitrary labels
1 val _select :
2 (([`branch of 'r2 * 'br],'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'post) slot
3 -> ('p -> 'br) -> ('pre, 'post, unit) session
4 val _branch_start : (([`branch of 'r1 * 'br], 'r1*'r2) sess, 'x, 'pre, 'dummy) slot
5 -> ('br * ('r1*'r2) -> ('pre, 'post,'v) session) -> ('pre, 'post, 'v) session
6 val _branch :
7 (([`branch of 'r1 * 'br], 'r1*'r2) sess, ('p,'r1*'r2) sess, 'pre, 'mid) slot
8 -> 'p * ('r1*'r2) -> ('mid,'post,'v) session -> ('pre, 'post, 'v) session

Listing 7 Travel agency
1 let customer cst_ch =
2 connect cst_ch ~bindto:_0 >>
3 [%select _0 `quote] >>
4 send _0 "London to Paris" >>
5 let%s cost = recv _0 in
6 if cost > 100. then
7 [%select _0 `reject] >>
8 close _0
9 else

10 [%select _0 `agree] >>
11 send _0 (Address("London")) >>
12 let%s d : date = recv _0 in
13 close _0 >>
14 (Printf.printf "cost: %f\n" cost;
15 return ())
16 let agency cst_ch svc_ch =
17 accept cst_ch ~bindto:_0 >>
18 let rec loop () =

19 match%branch _0 with
20 | `quote ->
21 let%s dest = recv _0 in
22 send _0 80.00 >>
23 loop ()
24 | `reject -> close _0
25 | `agree ->
26 connect svc_ch ~bindto:_1 >>
27 deleg_send _1 ~release:_0 >>
28 close _1
29 in loop ()
30 let service svc_ch =
31 accept svc_ch ~bindto:_1 >>
32 deleg_recv _1 ~bindto:_0 >>
33 let%s (Address(addr)) = recv _1 in
34 send _0 (now()) >>
35 close _0 >> close _1

4 Applications

4.1 Travel agency

We demonstrate programming in session-ocaml using the Travel agency scenario
from [9], which consists of typical patterns found in business and financial
protocols. The scenario is played by three participants: customer, agency and
service (Listing 7). customer and service initially do not know each other, and
agency mediates a deal between them by session delegation.

customer begins an order session with agency and binds it to their own slot 0
(each process has a separate slot sequence). Then customer requests and receives
the price for the desired journey after sending the quote label. In our scenario,
customer requests "London to Paris" and agency replies with a fixed price 80.0.

Then customer might send the agree label to proceed the transaction with the
current price. Or if customer does not agree with the price, customer can cancel
the transaction by sending the reject label. Or, customer can send quote again
and this will be repeated an arbitrary number of times for different journeys (we
omit this branch from the code). In our program, customer agrees with agency at
a price less than 100.0, or otherwise rejects it and terminates the transaction.

Session-ocaml: a Session-based Library with Polarities and Lenses 13

Next, if customer agrees with the price, agency opens the session with service

and binds it to slot 1. Then it delegates to service, through slot 1, the interactions
with customer remaining for slot 0. customer then sends the billing address (unaware
that he/she is now talking to service), and service replies with the dispatch date
(now()) for the purchased tickets. The transaction is complete.

The protocol type between customer and agency is inferred as:
[`branch of req *
[`quote of [`msg of req * string * [`msg of resp * float * 'a]]

|`reject of [`close]

|`agree of [`msg of req * addr * [`msg of resp * date * [`close]]]]] as 'a

Delegation from agency to service is inferred in the channel of service as:
[`deleg of req *
([`msg of 'r1 * addr * [`msg of 'r2 * date * [`close]]], 'r1*'r2) sess * [`close]]

The delegated type is polymorphic on the polarity and communication directions
(§ 3.1), hence the service can handle both polarities. It reflects the part after
agree in the protocol above where 'r1 is req and 'r2 is resp. Thus delegation with
the polarised session types and slots effectively gives a way to coordinate higher
order communication incurred by link mobility.

Static checking of delegation makes it easier to find errors otherwise hard to
analyse due to the indirect nature of delegation. Consider a case that service

changes its behaviour to receive addr * paymeth. Now the inferred protocol type
at service would be:
[`deleg of req * ([`msg of 'r1 * (addr * paymeth) * [`msg of 'r2 * date * [`close

]]], 'r1*'r2) sess * [`close]]

Whereas that of agency remains same as before, it results in a type error at the mo-
ment when a service channel is passed. Without static typing, the run-time error
would be deferred until the beginning of actual client-service communication.

4.2 An SMTP protocol

This section shows an SMTP client implementation by session-ocaml. Listing 8
and Listing 9 show the protocol type of SMTP and message types representing
SMTP commands and replies; and Listing 10 shows the client implementation.
Line 2 in Listing 10 generates a service channel for connecting to the SMTP server.
Here smtp_adapter is an adapter that converts a sequence of session messages to a
TCP stream. Its definition is shown in Listing 11 and built using the combinators
shown in Listing 12. The functions req and resp accept a function to convert
between a message of type ’v and a command string and construct an adapter. bra
and sel are branching and selection respectively, and cls is the end of the session.
The function with the same name as the message type is a function for converting
to a string (or vice versa) and is responsible for actual stream processing. In
OCaml, f @@ g means function composition fun x -> f (g x), and begin 𝑒 end

means (𝑒). Since OCaml evaluates eagerly, each function is 𝜂-expanded with a
parameter ch so that it does not recurse infinitely.

14 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

Listing 8 The protocol type of SMTP
1 type smtp =
2 [`msg of resp * r200 * [`msg of req * ehlo * [`msg of resp * r200 * mail_loop]]]
3 and mail_loop =
4 [`branch of req *
5 [`left of [`msg of req * mail * [`msg of resp * r200 * rcpt_loop]]
6 |`right of [`msg of req * quit * [`close]]]]
7 and rcpt_loop =
8 [`branch of req *
9 [`left of [`msg of req * rcpt *

10 [`branch of resp * [`left of [`msg of resp * r200 * rcpt_loop]
11 |`right of [`msg of resp * r500 * [`msg of req * quit * [`close]]]]]]
12 |`right of body]]
13 and body =
14 [`msg of req * data * [`msg of resp * r354 * [`msg of req * string list *
15 [`msg of resp * r200 * mail_loop]]]]

Listing 9 Types for SMTP commands and replies
1 (* EHLO example.com *) (* MAIL FROM: alice@example.com *)
2 type ehlo = EHLO of string type mail = MAIL of string
3 (* RCPT TO: bob@example.com *) (* DATA *)
4 type rcpt = RCPT of string type data = DATA
5 (* QUIT *) (* Success e.g. 250 Ok *)
6 type quit = QUIT type r200 = R200 of string list
7 (* Error e.g. 554 Relay denied *) (* 354 Start mail input *)
8 type r500 = R500 of string list type r354 = R354 of string list

The adapter for branch bra is asymmetric in its parameters [18]. bra has a
parser of type string -> ’v option on the left side since the adapter determines
a continuation in a branch according to the parsed result of a received string.
The adapter chooses left if the parser succeeds (returns Some(x)), and right if
it fails (None). By nesting bra, any nesting of branch can be constructed.

Comparing to the existing Haskell implementation in [11], an advantage is
that our OCaml version enjoys equi-recursive session types, so we avoid the
manual annotation of repeated unwind operations needed to unfold iso-recursive
types in Haskell. A shortcoming of the OCaml version is the explicit nature
of adapter. However, since the adapter and the protocol type have the same
structure, it can be generated semi-automatically from the type declaration in
Listing 8 when OCaml gains ad hoc polymorphism such as type classes. We
expect this to be possible with modular-implicits [31], which will be introduced
in a future version of OCaml. On the other hand, it is also possible to omit the
protocol type declaration in Listing 8 by inferring the type of the adapter.

5 Related work

We discuss related work focusing on the functional programming languages. For
other related work, see § 1.

Session-ocaml: a Session-based Library with Polarities and Lenses 15

Listing 10 An implementation of SMTP client
1 open Session0
2 let ch = TcpSession.new_channel smtp_adapter "smtp.example.com:25"
3 let smtp_client () = connect_ ch begin fun () -> let%s R200 s = recv () in
4 send (EHLO("me.example.com")) >> let%s R200 _ = recv () in
5 select_left () >> (* enter into the main loop *)
6 send (MAIL("alice@example.com")) >> let%s R200 _ = recv () in
7 select_left () >> (* enter into recipient loop *)
8 send (RCPT("bob@example.com")) >>
9 branch2 (fun () -> let%s R200 _ = recv () in (* recipient Ok *)

10 select_right () >> (* proceed to sending the mail body *)
11 send DATA >> let%s R354 _ = recv () in
12 send (escape mailbody) >> let%s R200 _ = recv () in
13 select_right () >> send QUIT >> close ())
14 (fun () -> let%s R500 msg = recv () in (* a recipient is rejected *)
15 (List.iter print_endline msg; send QUIT) >> close ()) end ()

Listing 11 The TCP adapter for a SMTP client
1 let rec smtp_adapter ch = (resp r200 @@ req ehlo @@ resp r200 @@ ml_p) ch
2 and ml_p ch = sel ~left:(req mail @@ resp r200 @@ rp_p) ~right:(req quit @@ cls) ch
3 and rp_p ch = sel ~left:(req rcpt @@ bra ~left:(r200, rp_p)
4 ~right:(resp r500 @@ req quit @@ cls))
5 ~right:bd_p ch
6 and bd_p ch = (req data @@ resp r354 @@ req string_list @@ resp r200 @@ ml_p) ch

Implementations in Haskell The first work done by Neubauer and Thie-
mann [18] implements the first-order single-channel session types with recursions.
Using parameterised monads, Pucella and Tov [26] provide multiple sessions, but
manual reordering of symbol tables is required. Imai et al. [11] extend [26] with
delegation, handling multiple sessions in a user-friendly manner by using type-
level functions. Orchard and Yoshida [20] use an embedding of effect systems in
Haskell via graded monads based on a formal encoding of session-typed 𝜋-calculus
into PCF with an effect system. Lindley and Morris [16] provide an embedding
of the GV session-typed functional calculus [30] into Haskell, building on a linear
𝜆-calculus embedding by Polakow [25]. Duality inference is mostly represented
by a multi-parameter type class with functional dependencies [14]; For instance,
class Dual t t’| t -> t’, t’ -> t declares that t can be inferred from its dual
t’ and vice versa. However, all of the above works depend on type-level features
in Haskell, hence they are not directly applicable to other programming languages
including OCaml. See [21] for a detailed survey. session-ocaml generalises the
authors’ previous work in Haskell [11] by replacing type-level functions with
lenses, leading to wider applicability to other programming languages.

Implementations in OCaml Padovani [22] introduces FuSe, which implements
multiple sessions with dynamic linearity checking and its single-session version
with static checking in OCaml. Our session-ocaml achieves static typing for
multiple sessions with delegation by introducing session manipulations based on

16 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

Listing 12 Combinators for TCP adapters
1 type 'p net = raw_chan -> (('p, serv) sess * all_empty, all_empty, unit) monad
2 val req : ('v -> string) -> 'p net -> [`msg of req * 'v * 'p] net
3 val resp : (string -> 'v parse_result) -> 'p net -> [`msg of resp * 'v * 'p] net
4 val sel : left:'p1 net -> right:'p2 net ->
5 [`branch of req * [`left of 'p1|`right of 'p2]] net
6 val bra : left:((string -> 'v1 parse_result) * 'p1 net) -> right:'p2 net ->
7 [`branch of resp * [`left of [`msg of resp * 'v1 * 'p1] |`right of 'p2]] net
8 val cls : [`close] net

lenses; and provides an idiomatic way to declare branching with arbitrary labels;
while FuSe combines static and dynamic approach to achieve them.

The following example shows that session-ocaml can avoid linearity violation,
while FuSe dynamically checks it at the runtime.

let rec loop () = let s = send "*" s in
match branch s with `stop s -> close s |`cont _ -> loop ()

loop sends "*" repeatedly until it receives label stop. Although the endpoint s

should be used linearly, the condition is violated at the beginning of the second
iteration since the endpoint is disposed by using the wildcard _ at the end of
the loop. In FuSe 0.7, loop is well-typed and terminates in error InvalidEndpoint
at runtime. In session-ocaml, this error inherently does not occur since each
endpoint is implicit inside the monad and indirectly accessed by lenses.

[22] gives a micro-benchmark which measures run-time performance between
the static and dynamic versions of FuSe. Based on the benchmark, it is shown
that the overhead incurred by dynamic checking is negligible when implemented
with a fast communication library such as Core [12], and concludes that the static
version of FuSe performs well enough in spite of numerous closure creations in
a monad. The FuSe implementation has been recently extended to context free
session types [29] by adding an endpoint attribute to session types [23].

On duality inference, a simple approach in OCaml is firstly introduced by
Pucella and Tov [26]. The idea in [26] is to keep a pair of the current session
and its dual at every step; therefore the notational size of a session type is twice
as big as that in [5]. FuSe [22] reduces its size by almost half using the encoding
technique in [3] by modelling binary session types as a chain of linear channel
types as follows. A session type in FuSe (’a,’b) t prescribes input (’a) and
output (’b) capabilities. A transmission and a reception of a value ’v followed by
a session (’a,’b) t are represented as (_0,’v*(’a,’b) t) t and (’v*(’a,’b)

t,_0) t respectively, where _0 means “no message”; then the dual of a session
type is obtained by swapping the top pair of the type. A drawback of these FuSe
notations is it becomes less readable when multiple nestings are present. For
example, in a simplified variant of the logic operation server in Listing 2 with no
recursion nor branch, the protocol type of log_ch becomes:
[`msg of req * binop * [`msg of req * (bool*bool) * [`msg of resp * bool * [`close]]]]

In FuSe, at server’s side, the channel should be inferred as:
(binop * ((bool*bool) * (_0, bool * (_0,_0) t) t, _0) t, _0) t

Session-ocaml: a Session-based Library with Polarities and Lenses 17

Due to a sequence of flipping capability pairs, more effort is needed to understand
the protocol. To recover the readability, FuSe supplies the translator Rosetta
which compiles FuSe types into session type notation with the prefixing style
and vice versa. Our polarised session types are directly represented in a prefixing
manner with the slight restriction shown in § 3.3.

6 Conclusion

We have shown session-ocaml, a library for session-typed communication which
supports multiple simultaneous sessions with delegation in OCaml. The contribu-
tions of this paper are summarised as follows. (1) Based on lenses and the slot
monad, we achieved a fully static checking of session types by the OCaml type
system without adding any substantial extension to the language. Previously, a
few implementations were known for a single session [22,26], but the one that
allows statically-checked multiple sessions is new and shown to be useful. To the
authors’ knowledge, this is the first implementation which combines lenses and
a parameterised monad. (2) On top of (1), we proposed macros for arbitrarily
labelled branches. The macros “patch up” only the branching and selection parts
where linear variables are inevitably exposed due to limitation on polymorphic
variants. (3) We proposed a session type inference framework solely based on the
OCaml built-in type unification. Communication safety is guaranteed by checking
equivalence of protocol types inferred at both ends with different polarities.

Type inference plays a key role in using lenses without the burden of writing
any type annotations. Functional programming languages such as Standard ML,
F# and Haskell have a nearly complete type inference, hence it is relatively
easy to apply the method presented in this paper. On the other hand, languages
such as Scala, Java and C# have a limited type inference system. However, by
a recent extension with Lambda expressions in Java 8, lenses became available
without type annotations in many cases (see a proof-of-concept at https://github.
com/keigoi/slotjava). The main difficulty for implementing session types is
selection primitives since they require type annotations for non-selected branches.
Development of such techniques is future work.

Our approach which uses slots for simultaneous multiple sessions resembles
parameterised session types [2,19], and it is smoothly extendable to the multiparty
session type framework [6]. We plan to investigate code generations from Scribble
[28] (a protocol description language for the multiparty session types) along the
line of [7,8] integrating with parameterised features [2, 19].

Acknowledgments We thank Raymond Hu and Dominic Orchard for their
comments on an early version of the paper. The third author thanks the JSPS
bilateral research with NFSC for fruitful discussion. This work is partially sup-
ported by EPSRC projects EP/K034413/1, EP/K011715/1, EP/L00058X/1,
EP/N027833/1 and EP/N028201/1; by EU FP7 612985 (UPSCALE), and
COST Action IC1405 (RC); by JSPS International Fellowships (S15051), and
KAKENHI JP17K12662, JP25280023 and JP17H01722 from JSPS, Japan.

https://github.com/keigoi/slotjava
https://github.com/keigoi/slotjava

18 Keigo Imai, Nobuko Yoshida, and Shoji Yuen

References

1. Atkey, R.: Parameterized Notions of Computation. Journal of Functional Program-
ming 13(3-4), 355–376 (2009)

2. Charalambides, M., Dinges, P., Agha, G.A.: Parameterized, Concurrent Session
Types for Asynchronous Multi-Actor Interactions. Science of Computer Program-
ming 115-116, 100–126 (2016)

3. Dardha, O., Giachino, E., Sangiorgi, D.: Session Types Revisited. In: PPDP ’12:
Proceedings of the 14th Symposium on Principles and Practice of Declarative
Programming. pp. 139–150. ACM, New York, NY, USA (2012)

4. Garrigue, J.: A mailing-list post (2006), available at https://groups.google.com/d/
msg/fa.caml/GWWtHOP35dI/IsrOze-qVLwJ

5. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: ESOP ’98: Proceedings
of the 7th European Symposium on Programming. Lecture Notes in Computer
Science, vol. 1381, pp. 122–138. Springer (1998)

6. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types.
In: POPL. pp. 273–284. ACM (2008), a full version, JACM, Vol 63(1), No. 9, 67
pages, 2016

7. Hu, R., Yoshida, N.: Hybrid Session Verification through Endpoint API Generation.
In: FASE. LNCS, vol. 9633. Springer (2016)

8. Hu, R., Yoshida, N.: Explicit Connection Actions in Multiparty Session Types. In:
FASE. LNCS, Springer (2017)

9. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in Java.
In: ECOOP 2008 - Object-Oriented Programming, 22nd European Conference,
Paphos, Cyprus, July 7-11, 2008, Proceedings. pp. 516–541 (2008)

10. Imai, K., Yoshida, N., Yuen, S.: Session-ocaml: a session-based library with polarities
and lenses. Tech. rep., Imperial College London (2017), to appear.

11. Imai, K., Yuen, S., Agusa, K.: Session Type Inference in Haskell. In: Postproceedings
of Thrid Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES 2010). vol. 69, pp. 74–91 (March 2010)

12. Jane Street Developers: Core library documentation (2016), available at https:
//ocaml.janestreet.com/ocaml-core/latest/doc/core/

13. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session Types for Rust. In: WGP
2015: Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming.
pp. 13–22. ACM (2015)

14. Jones, M.P.: Type Classes with Functional Dependencies. In: ESOP ’00: Proceedings
of the 9th European Symposium on Programming Languages and Systems. pp.
230–244. Springer (2000)

15. Kmett, E.: Lenses, Folds and Traversals (2012), available at http://lens.github.io/
16. Lindley, S., Morris, J.G.: Embedding Session Types in Haskell. In: Haskell 2016:

Proceedings of the 9th International Symposium on Haskell. pp. 133–145. ACM
(2016)

17. Milner, R.: Communicating and Mobile Systems: the 𝜋-Calculus. Cambridge Uni-
versity Press (1999)

18. Neubauer, M., Thiemann, P.: An Implementation of Session Types. In: PADL’04 :
Practical Aspects of Declarative Languages. Lecture Notes in Computer Science,
vol. 3057, pp. 56–70. Springer (2004)

19. Ng, N., Coutinho, J.G., Yoshida, N.: Protocols by Default: Safe MPI Code Genera-
tion based on Session Types. In: CC’15. pp. 212–232. LNCS, Springer (2015)

https://groups.google.com/d/msg/fa.caml/GWWtHOP35dI/IsrOze-qVLwJ
https://groups.google.com/d/msg/fa.caml/GWWtHOP35dI/IsrOze-qVLwJ
https://ocaml.janestreet.com/ocaml-core/latest/doc/core/
https://ocaml.janestreet.com/ocaml-core/latest/doc/core/
http://lens.github.io/

Session-ocaml: a Session-based Library with Polarities and Lenses 19

20. Orchard, D., Yoshida, N.: Effects as sessions, sessions as effects. In: POPL 2016:
43th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 568–581. ACM (2016)

21. Orchard, D., Yoshida, N.: Sessions types with linearity in Haskell. In: Gay, S.J.,
Ravara, A. (eds.) Behavioural Types: from Theory to Tools. River Publishers (2017)

22. Padovani, L.: A Simple Library Implementation of Binary Sessions. Journal of
Functional Programming 27, e4 (2016)

23. Padovani, L.: Context-Free Session Type Inference. In: ESOP 2017: 26th European
Symposium on Programming. Lecture Notes in Computer Science (2017), to appear.
Preliminary version available at https://hal.archives-ouvertes.fr/hal-01385258/

24. Pierce, B.C.: Recursive Types. In: Types and Programming Languages, chap. 20,
pp. 267–280. MIT Press (2002)

25. Polakow, J.: Embedding a Full Linear Lambda Calculus in Haskell. In: Haskell
’15: Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell. pp. 177–188.
ACM (2015)

26. Pucella, R., Tov, J.A.: Haskell Session Types with (Almost) No Class. In: Haskell
’08: Proceedings of the first ACM SIGPLAN symposium on Haskell. pp. 25–36.
ACM (2008)

27. Scalas, A., Yoshida, N.: Lightweight Session Programming in Scala. In: ECOOP
2016: 30th European Conference on Object-Oriented Programming. LIPIcs, vol. 56,
pp. 21:1–21:28. Dagstuhl (2016)

28. Scribble Project homepage, www.scribble.org
29. Thiemann, P., Vasconcelos, V.T.: Context-Free Session Types. In: ICFP ’16: Pro-

ceedings of the 21st ACM SIGPLAN International Conference on Functional Pro-
gramming. pp. 462–475 (2016)

30. Wadler, P.: Propositions as sessions. In: ICFP ’12: Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming. pp. 273–286.
ACM (2012)

31. White, L., Bour, F., Yallop, J.: Modular implicits. In: ML’14: ACM SIGPLAN ML
Family Workshop 2014. Electronic Proceedings in Theoretical Computer Science,
vol. 198, pp. 22–63 (2015)

32. Yoshida, N., Vasconcelos, V.T.: Language Primitives and Type Discipline for
Structured Communication-Based Programming Revisited: Two Systems for Higher-
Order Session Communication. Electronic Notes in Theoretical Computer Science
171(4), 73–93 (2007)

https://hal.archives-ouvertes.fr/hal-01385258/
www.scribble.org

	Session-ocaml: a Session-based Library with Polarities and Lenses

