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Abstract. We enhance the dependency pair method in order to prove termination using
recursive structure analysis in simply-typed term rewriting systems, which is one of the com-
putational models of functional programs. The primary advantage of our method is that one
can exclude higher-order variables which are difficult to analyze theoretically, from recursive
structure analysis. The key idea of our method is to analyze recursive structure from the
viewpoint of strong computability. This property was introduced for proving termination in
typed λ-calculus, and is a stronger condition than the property of termination. The difficulty
in incorporating this concept into recursive structure analysis is that because it is defined
inductively over type structure, it is not closed under the subterm relation. This breaks the
correspondence between strong computability and recursive structure. In order to guarantee
the correspondence, we propose plain function-passing as a restriction, which is satisfied by
many non-artificial functional programs.
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1 Introduction

One of the important features of functional programming languages is higher-order abstraction achieved
using higher-order functions which may take other functions as arguments and may return functions
as results. For example, the left-folding function foldl which is a built-in function of the functional
programming language SML [38], is defined as follows:

fun foldl f y nil = y
| foldl f y (x::xs) = foldl f (f (x,y)) xs;

This function has the type (’a * ’b -> ’b) -> ’b -> ’a list -> ’b, and hence the first argument
f has the functional type ’a * ’b -> ’b, where ’a and ’b are type variables. The constructor :: takes
as argument a tuple in ’a * ’a list.

One of the computational models that provides operational semantics for functional programs and
directly handles higher-order functions is simply-typed term-rewriting systems (STRSs) [20]. For example,
the usual addition and multiplication over natural numbers are represented as the following STRSs:

R+ = {+[(x, 0)] → x, + [(x, s[y])] → s[+[(x, y)]]}
R× = R+ ∪ {×[(x, 0)] → 0, × [(x, s[y])] → +[(×[(x, y)], x)]}

Moreover the above foldl function with the simple type (N ×N → N) → N → L → N is represented as
the following STRS:

Rfoldl =
{

foldl[f, y, nil] → y
foldl[f, y, cons[(x, xs)]] → foldl[f, f [(x, y)], xs]

For the expression “foldl f y nil”, the term foldl[f, y, nil] in the STRS Rfoldl is constructed using the
the operator “foldl” and the argument list “[f, y, nil]”. A tuple is represented by the special constructor
tp, and a tuple tp[x, xs] is usually denoted by a syntactic sugar (x, xs). Note that simple types do not
include type variables, hence STRSs do not handle polymorphic functions directly. Moreover STRSs do
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not use the λ-abstraction, i.e., do not represent anonymous functions. On the other hand, STRSs have
a high compatibility with first-order TRSs.

Using the function foldl, the sum function, which calculates the total sum for an input list, and the
prod function, which calculates the total product, can be represented by the following STRSs:

Rsum = R+ ∪ Rfoldl ∪ {sum → foldl[+, 0]}
Rprod = R× ∪ Rfoldl ∪ {prod → foldl[×, s[0]]}

Higher-order abstraction can be achieved by using higher-order functions in this way, thereby increasing
the expressive power of the language and the reusability of programs.

We can now show the termination of the STRSs Rsum and Rprod. Intuitively, we believe that they do
terminate, but this is quite difficult to verify because their reduction may be affected by unanticipated
behaviors of functions held in higher-order variables. Let’s consider the STRS Rfoldl. For most program-
mers, the rewriting system Rfoldl that defines foldl terminates. The reasons are that the definitions are
assumed to be modular with no recursion through modules, that function f is assumed to be terminating,
and that the rightmost argument in the definition of foldl, namely cons[(x, xs)] is replaced by a smaller
argument, namely xs. However, this reasoning does not hold in general. In fact, if we add the function
foo to Rfoldl as shown:

Rfoo = Rfoldl ∪ {foo[(x, y)] → foldl[foo, y, cons[(x, nil)]]}

then the second argument of foldl is called through mutual recursion with foo and evaluation does not
terminate:

foo[(x, y)] → foldl[foo, y, cons[(x, nil)]] → foldl[foo, foo[(x, y)], nil]

Arts and Giesl proposed a method for proving termination of TRSs called the dependency pair method
[3]. It analyzes the recursive structure through function-call dependency relationships in order to prove
termination, and it was extended to STRSs [20], and HRSs [29]. Analyzing STRS Rfoo with the method
in [20] yields the following recursive structure.{

foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]
}{

foldl][f, y, cons[(x, xs)]] → f [(x, y)]
foo][(x, y)] → foldl][foo, y, cons[(x, nil)]]

}
 foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]

foldl][f, y, cons[(x, xs)]] → f [(x, y)]
foo][(x, y)] → foldl][foo, y, cons[(x, nil)]]


Each set is called a recursion component. Dependency pair method proves termination by showing
non-loopingness in each recursion component. In order to show non-loopingness, we use the notion of
(semi-)reduction pairs [19, 20], which is an improvement on weak-reduction order [3], and the notion of
the subterm criterion [16], which will be extended in subsection 3.2.

In this paper, we propose a new dependency pair method, called the SC-dependency pair method.
The key idea of the method is to analyze recursive structures from the viewpoint of strong computability1.
This property was introduced for proving termination in typed λ-calculus, and is a stronger condition
than the property of termination [13, 33]. Intuitively, the notion of strong computability corresponds
to terminating functions. More precisely, for an arbitrary relevant input, computations of the function
always succeed. One of the most important pioneering results for proving termination in higher-order
rewriting systems, is the higher-order path ordering by Jouannaud and Rubio [17], which was reformulated
in [27]. Kusakari showed that it can also be applied to STRSs, and studied an application to the argument
filtering method [21], which generates reduction pairs, and was introduced with first-order TRSs by Arts
and Giesl [3]. We also incorporated the idea of strong computability into the dependency pair method
[32], however the result only proves the sufficient completeness with respect to the call-by-value strategy.

Intuitively, the dependency pair method in [20] analyzes a dynamic recursive structure based on
function-call dependency, while the SC-dependency pair method analyzes a static recursive structure
based on definition dependency. Hence the SC-dependency pair method does not require the analysis of
higher-order variables (such as that of foldl][f, y, cons[(x, xs)]] → f [(x, y)]), and the number of recursion

1Recently, Blanqui has independently proposed an idea on incorporating the notion of strong computability into depen-
dency pair methods for proving termination of CRS-like systems [5].
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components is significantly reduced. For example, analyzing STRS Rfoo with the SC-dependency pair
method yields only the following two recursion components:

{foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]}
{foo][(x, y)] → foo][z]}

As a result, the SC-dependency pair method is extremely powerful and efficient. Indeed, our method
proves the termination of simply-typed combinatory logic from two facts which can be verified easily:
there are no static recursive structure, and each higher-order variable occurs in an argument on the
left-hand side (cf. Example 4.25).

The most important and difficult component in the design of the SC-dependency pair method is the
compatibility between the structures of “terms” and “types”, because strong computability is defined
over type structure (cf. Definition 4.1), whereas SC-dependency pairs are defined over term structure (cf.
Definition 4.11). From a technical viewpoint, it is the fact that strong computability is not closed under
the subterm relation that makes its design difficult. Indeed the SC-dependency pair method cannot be
applied to general STRSs (cf. Example 4.4), so we want to define a class that is sufficiently expressive
and a desirable property. One such restriction is the notion of plain function-passing (cf. Definition 4.7).
Roughly speaking, plain function-passing means that every higher-order variable occurs in an argument
position on the left-hand side. Every terminating STRS in this paper is plain function-passing, and many
non-artificial functional programs are written as plain function-passing STRSs. This fact demonstrates
the versatility of our SC-dependency pair method.

The remainder of this paper is organized as follows. The next section provides preliminaries required
later in the paper. In Section 3, in order to clarify various concepts, we provide an abstract framework that
unifies several dependency pair methods, and reformulate the dependency pair method in [20]. In Section
4, we give a new dependency pair method, called the SC-dependency pair method, whose soundness is
guaranteed by the concept of strong computability. Concluding remarks are presented in Section 6.

2 Preliminaries

In this section, we introduce the basic notations for simply-typed term rewriting systems [20]. We assume
that the reader is familiar with notions of term rewriting systems [34].

2.1 Abstract Reduction System

An abstract reduction system (ARS) is a pair 〈A,→〉 where A is a set and → is a binary relation on A.
The transitive-reflexive closure and the transitive closure of a binary relation → are denoted by ∗−→ and
+−→, respectively.

An element a ∈ A is said to be terminating or strongly normalizing in an ARS R = 〈A,→〉, denoted
by SN(R, a), if every reduction sequence staring from a is finite. Formally, the predicate SN is defined
as SN(R, a) ⇐⇒ a ∈ ASN , where ASN is the least set such that a ∈ ASN ⇐⇒ ∀b(a → b ⇒ b ∈ ASN).
An ARS R = 〈A,→〉 is said to be terminating or strongly normalizing, denoted by SN(R), if SN(R, a)
holds for any a ∈ A.

2.2 Untyped Term Rewriting Systems

The set T (Σ,V) of (untyped) terms generated from a set Σ of function symbols and a set V of variables with
Σ∩V = ∅ is the smallest set such that a[t1, . . . , tn] ∈ T (Σ,V) whenever a ∈ Σ∪V and t1, . . . , tn ∈ T (Σ,V).
If n = 0, we write a for a[ ]. We remark that we use variadic function, which is a function of variable
arity. For instance, we can have both f , f [x] and f [x, y] as terms. The identity of terms is denoted by
≡. We often write s0[s1, . . . , sn] for a[u1, . . . , uk, s1, . . . , sn], where s0 ≡ a[u1, . . . , uk]. V ar(t) is the set
of variables in t, and args(t) is the set of arguments in t, defined as args(a[t1, . . . , tn]) = {t1, . . . , tn}.

The set of positions of a term t is the set Pos(t) of strings over positive integers, which is inductively
defined as Pos(a[t1, . . . , tn]) = {ε} ∪

∪n
i=1{ip | p ∈ Pos(ti)}. The prefix order ≺ on positions is defined

by p ≺ q iff pw = q for some w (6= ε). The position ε is said to be the root, and a position p such that
p ∈ Pos(t)∧ p1 /∈ Pos(t) is said to be a leaf. The symbol at position p in t is denoted by (t)p. Sometimes
the root symbol (t)ε in a term t is denoted by root(t).
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A substitution θ is a mapping from variables to terms. A substitution is extended to a mapping
from terms to terms, denoted by θ̂, as θ̂(f [t1, . . . , tn]) = f [θ̂(t1), . . . , θ̂(tn)] if f ∈ Σ; θ̂(z[t1, . . . , tn])
= a[u1, . . . , uk, θ̂(t1), . . . , θ̂(tn)] if z ∈ V with θ(z) = a[u1, . . . , uk]. For simplicity, we identify θ and θ̂,
and write tθ instead of θ(t).

A context is a term with one occurrence of the special symbol ¤, called a hole. The notation C[t]
denotes the term obtained by substituting t into the hole of C[ ], that is, C[t] ≡ a[t1, . . . , tn, u1, . . . , uk] if
C[ ] ≡ ¤[u1, . . . , uk] and t ≡ a[t1, . . . , tn], and C[t] ≡ a[. . . , C ′[t], . . .] if C[ ] ≡ a[. . . , C ′[ ], . . .]. A context is
said to be a leaf-context if the hole occurs at a leaf position, and to be a root-context if the hole occurs at
the root position. For example, s[¤] and foldl[y, ¤] are leaf-contexts, ¤[0] and ¤[y, nil] are root-contexts,
and ¤ is a leaf-context and a root-context.

A term u is said to be a subterm (resp. an extended subterm) of t, denoted by t ≥sub u (resp. t ≥esub u),
if there exists a leaf-context (resp. context) C[ ] such that t ≡ C[u]. We also define >sub =≥sub \ ≡ and
>esub =≥esub \ ≡. We denote all subterms (resp. extended subterms) of t by Sub(t) (resp. ESub(t)).
The subterm of t at position p is denoted by t|p. Note that by using currying technique [18] the term
a′[a[x, y]] is written as @(a′, @(@(a, x), y)). The term a′[a[x, y]] and the curried term @(a′, @(@(a, x), y))
has the following tree structures, respectively:

a′ a x y
@

@
@

a

a′

yx
The subterms correspond with the subtrees in the left tree, and the extended subterms correspond with
the subtrees in the right tree. Actually, Sub(a′[a[x, y]]) = {a′[a[x, y]], a[x, y], x, y} and ESub(a[x, y]) =
{a′[ ], a[ ], a[x]} ∪Sub(a′[a[x, y]]).

A rule is a pair (l, r) of terms, denoted by l → r, such that root(l) ∈ Σ and V ar(l) ⊇ V ar(r). The
reduction relation −→

R
of a set R of rules is defined by s−→

R
t iff s ≡ C[lθ] and t ≡ C[rθ] for some rule

l → r ∈ R, context C[ ] and substitution θ. We often omit the subscript R whenever no confusion arises.
An untyped term rewriting system (UTRS) is an abstract reduction system 〈T (Σ,V), −→

R
〉. We often

denote an UTRS 〈T (Σ,V), −→
R
〉 by R.

2.3 Simply-Typed Term Rewriting Systems

A set of basic types is denoted by B. The set S of simple types (with product types) is generated from B
by type constructors → and ×, that is, S ::= B | (S1 → S2) | (S1 × · · ·×Sn). To minimize the number of
parentheses, we assume that → is right-associative and → has lower precedence than ×. We also assume
that Σ contains a special constructor tp, called a tuple. We write (t1, . . . , tn) instead of tp[t1, . . . , tn]. A
typing function τ is a function from V ∪ (Σ \ {tp}) to S. We assume that for any α ∈ S there exists a
variable x ∈ V such that τ(x) = α. Each typing function τ is naturally extended to terms as follows:
for any t ≡ a[t1, . . . , tn] ∈ T (Σ,V), if τ(ti) = αi (i = 1, . . . , n) and either τ(a) = α1 → · · · → αn → α
or a = tp ∧ α = α1 × · · · × αn, then τ(t) = α. We remark that the symbol tp can be polymorphically
interpreted, that is, we can interpret that τ(tp) = S1 → · · · → Sn → S1×· · ·×Sn for any S1, . . . , Sn ∈ S.
A term t ∈ T (Σ,V) is said to be simply typed if t has a simple-type, that is, τ(t) is defined. We denote
the set of all simply-typed terms by Tτ (Σ,V). A product type is a simple type of the form α1 × · · · × αn,
and a functional type or a higher-order type is a simple type of the form α → β. We denote the set of
functional types by Sfun, and the set of functional typed terms by Tfun(Σ,V). We use Vfun to stand for
the set of functionally typed variables (higher-order variables). Now we restrict substitutions to type
preserving substitutions. We also index the hole ¤α with every simple type α, and assume that τ(t) = α
whenever we denote C[t] for each context C[ ] with a hole ¤α.

A simply-typed rule is a pair (l, r) of simply-typed terms, denoted by l → r, such that root(l) ∈ Σ\{tp},
V ar(l) ⊇ V ar(r) and τ(l) = τ(r). A simply-typed term rewriting system (STRS) is an abstract reduction
system 〈Tτ (Σ,V), −→

R
〉. We often denote an STRS 〈Tτ (Σ,V), −→

R
〉 by R. For each STRS R, we define

TSN(R) = {t ∈ Tτ (Σ,V) | SN(R, t)} and Targs
SN (R) = {t ∈ Tτ (Σ,V) | SN(R, u) for all u ∈ args(t)}.
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3 Abstract Frameworks for Dependency Pair Methods and the
SN-dependency Pair Method

In order to distinguish between the dependency pair method for STRSs [20] and the new dependency pair
method based on strong computability introduced in the next section, we distinguish the two methods
as the SN-dependency pair method and the SC-dependency pair method, respectively.

Before introducing the SC-dependency pair method, we provide an abstract framework for dependency
pair methods. We introduce the notion of recursion components, and show that if all recursion components
of an STRS R are non-looping then R is terminating. We also introduce the notions of (semi-)reduction
pairs and the subterm criterion, which prove that recursion components are non-looping. In addition, we
explain how dependency pair methods work, by reformulating the SN-dependency pair method. In the
next section, we will present the SC-dependency pair method using this abstract framework.

3.1 Dependency Pair and Recursion Component

The most basic notion in all dependency pair methods is that of the dependency pair itself, which
expresses some kind of function dependency. Firstly, we recall the SN-dependency pair method in [20].
Note that we naturally extend the definition so that it can handle rules of function type, because the
STRSs defined in [20] have the restriction that all rules are of basic types. Before stating the definition,
we introduce several concepts.

Definition 3.1 Let R be an STRS and l → r ∈ R such that τ(l) = α1 → · · · → αn → α and
α /∈ Sfun. The set (l → r)ex of the expansion forms of a rule l → r is defined as {l → r, l[z1] →
r[z1], . . . , l[z1, . . . , zn] → r[z1, . . . , zn]}, where z1, . . . , zn are fresh variables with ∀i.τ(zi) = αi. We also
define Rex =

∪
l→r∈R(l → r)ex.

Definition 3.2 All root symbols of the left-hand sides of rules in an STRS R, denoted by DR, are called
defined, whereas all other function symbols, denoted by CR, are called constructors. For each f ∈ DR, we
define a new function symbol f ], called the marked-symbol of f . For each t ≡ a[t1, . . . , tn], we define the
marked term t] by a][t1, . . . , tn] if a ∈ DR; otherwise t] ≡ t.

Definition 3.3 Let R be an STRS. A pair u] → v] of marked terms is an SN-dependency pair of R if
there exists u → r ∈ Rex such that v ∈ Sub(r), root(v) ∈ DR∪Vfun and v /∈ ESub(u′) for all u′ ∈ args(u)2.
We use DPSN(R) to denote the set of all SN-dependency pairs of R.

We recall that for t ≡ a′[a[x, y]] the term a[x] is an extended subterm (a[x] ∈ ESub(t)) but not a
subterm (a[x] /∈ Sub(t)).

Example 3.4 Let x, y, i, f, g ∈ V, and s, cons, foldl, foo, apply ∈ Σ such that τ(x) = τ(y) = τ(i) = N ,
τ(f) = N × N → N , τ(g) = τ(s) = N → N , τ(cons) = N × L → L, τ(foldl) = (N × N → N) → N →
L → N , τ(foo) = N → N × N → N , and τ(apply) = (N → N) → N → N . We consider the following
STRS R′

foo:

R′
foo =


foldl[f, y, nil] → y

foldl[f, y, cons[(x, xs)]] → foldl[f, f [(x, y)], xs]
foo[s[i], (x, y)] → foldl[foo[i], y, cons[(x, nil)]]

apply[g] → g

The definition of foo in R′
foo is a little different from the definition of Rfoo displayed in the introduction.

The change gives R′
foo the property of termination. DPSN(R′

foo) is the following:

DPSN(R′
foo) =


foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]
foldl][f, y, cons[(x, xs)]] → f [(x, y)]

foo][s[i], (x, y)] → foldl][foo[i], y, cons[(x, nil)]]
foo][s[i], (x, y)] → foo][i]

apply][g, z] → g[z]

2We slightly modify this condition from the original one in [20]: root(v) ∈ DR or root(v) ∈ V ∧ args(v) 6= [ ]. Such an
idea of excluding dependency pairs is due to Dershowitz [7].
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Note that foldl][f, y, cons[(x, xs)]] → f is not an SN-dependency pair because f is an extended subterm
of the first argument f of foldl[f, y, cons[(x, xs)]].

We now present an abstract framework for dependency chains.

Definition 3.5 Let P be a set of pairs of marked terms, À be a binary relation on terms, and Tl and Tr

be sets of terms. A sequence u]
0 → v]

0, u
]
1 → v]

1, · · · of pairs in P is said to be a 〈P,À〉-chain on (Tl, Tr)
if there exists θ0, θ1, . . . such that uiθi ∈ Tl, viθi ∈ Tr and (viθi)] À∗ (ui+1θi+1)] for any i.

In this abstract framework, the notion of dependency chains is reformulated as follows:

Definition 3.6 A DPSN(R)-chain of an STRS R is defined as 〈DPSN(R), −→
R
〉-chain on (Targs

SN (R), Targs
SN (R)).

The following theorem represents the essence of dependency pair methods.

Theorem 3.7 Let R be an ARS 〈Tτ (Σ,V),À〉, P be a set of pairs of marked terms, and Tl and Tr be
sets of terms. Suppose that there exists a set T of terms satisfying the following conditions:

(1) Tr ∩ T 6= ∅, and

(2) For any t ∈ Tr ∩ T , there exist u] → v] ∈ P and θ such that t] À∗ (uθ)], uθ ∈ Tl and vθ ∈ Tr ∩ T .

Then there exists an infinite 〈P,À〉-chain on (Tl, Tr).

Proof. Thanks to the property (1), let t ∈ Tr ∩ T . From the property (2), there exist u]
0 → v]

0 ∈ P
and θ0 such that t] À∗ (u0θ)], u0θ ∈ Tl and v0θ ∈ Tr ∩ T . From the property (2) again, there exist
u]

1 → v]
1 ∈ P and θ1 such that (v0θ)] À∗ (u1θ)], u1θ ∈ Tl and v1θ ∈ Tr ∩ T . By applying this procedure

repeatedly, we have an infinite sequence u]
0 → v]

0, u
]
1 → v]

1, u
]
2 → v]

2 · · ·, which is an infinite 〈P,À〉-chain
on (Tl, Tr). ¤

This theorem rebuilds again the fundamental theorem of the SN-dependency pair method stated in
[20].

Theorem 3.8 An STRS R is not terminating if and only if there exists an infinite DPSN(R)-chain.

Proof. (⇐) Trivial. (⇒) It suffices to show the properties (1) and (2) in Theorem 3.7 with T =
Tτ (Σ,V) \ TSN(R) and Tl = Tr = Targs

SN (R). (1) Any minimal size term in T is in Targs
SN (R). (2) This

property correspond to Lemma 5.4 in [20]. Although this lemma was given on untyped systems, the
proof can still be used because STRSs have the subject property (s−→

R
t ⇒ τ(s) = τ(t)). ¤

To paraphrase this proposition, the non-termination property and the existence of an infinite function-
call sequence interpreted by the SN-dependency pair method are logically equivalent. The SN-dependency
pair method proves termination by proving that an infinite function-call sequence does not exist.

Note that the (⇐)-part does not hold in the SC-dependency pair method introduced in the next
section. Hence the SC-dependency pair method has a theoretical limitation (as described in the concluding
remarks).

Finally, we present the concepts of dependency graphs and recursion components in an abstract
framework, and reformulate them in terms of the SN-dependency pair method.

Definition 3.9 Let P be a set of pairs of marked terms, À be a binary relation on terms, and Tl and Tr

be sets of terms. A 〈P,À〉-dependency graph on (Tl, Tr) is a directed graph, in which nodes are P and
there exists an arc from u]

0 → v]
0 ∈ P to u]

1 → v]
1 ∈ P if u]

0 → v]
0, u

]
1 → v]

1 is a 〈P,À〉-chain on (Tl, Tr).
A 〈P,À〉-recursion component on (Tl, Tr) is the set of nodes in a strongly connected subgraph of 〈P,À〉-
dependency graph on (Tl, Tr). A 〈P,À〉-recursion component C on (Tl, Tr) is said to be non-looping if
there exists no infinite 〈C,À〉-chain on (Tl, Tr) in which every u] → v] ∈ C occurs infinitely many times.

Definition 3.10 Let R be an STRS. The DPSN(R)-graph is defined as
〈DPSN(R), −→

R
〉-graph on (Targs

SN (R), Targs
SN (R)). We denote by RCSN(R) the set of 〈DPSN(R),→R〉-recursion

components on (Targs
SN (R), Targs

SN (R)).
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Example 3.11 The DPSN(R′
foo)-graph is the following:

apply][g, z] → g[z]

foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]

foo][s[i], (x, y)] → foldl][foo[i], y, cons[(x, nil)]]

foo][s[i], (x, y)] → foo][i]

foldl][f, y, cons[(x, xs)]] → f [(x, y)]

Hence the recursion components RCSN(R′
foo) is constructed by the following four components:

{
foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]

}{
foldl][f, y, cons[(x, xs)]] → f [(x, y)]

foo][s[i], (x, y)] → foldl][foo[i], y, cons[(x, nil)]]

}
 foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]

foldl][f, y, cons[(x, xs)]] → f [(x, y)]
foo][s[i], (x, y)] → foldl][foo[i], y, cons[(x, nil)]]

{
apply][g, z] → g[z]

}
Theorem 3.12 Let P be a finite set of pairs of marked terms, À be a binary relation on terms, and
Tl and Tr be sets of terms. Then there exists no infinite 〈P,À〉-chain on (Tl, Tr) if and only if any
〈P,À〉-recursion component on (Tl, Tr) is non-looping.

Proof. It is obvious because P is finite. ¤

Note that the abstract framework above is merely a reformulation of the dependency pair method
introduced in [3].

By applying Theorem 3.8 to this theorem, we obtain the following theorem.

Theorem 3.13 Let R be an STRS such that DPSN(R) is finite. Then R is terminating if and only if all
recursion components in RCSN(R) are non-looping.

As may be seen from this theorem, the SN-dependency pair method proves termination by proving
that all recursion-calls are non-looping.

3.2 Proving that Recursion Components are Non-looping

In this subsection, we introduce the notion of (semi-)reduction pairs and the subterm criterion, which
proves that recursion components do not loop. Lastly, we reformulate the SN-dependency pair method in
[20], and show that (semi-)reduction pairs and the subterm criterion play important roles in dependency
pair methods.

Firstly we introduce the notion of (semi-)reduction pairs described in [19], which is an improvement
on weak-reduction order [3].

Definition 3.14 Let & be a quasi-order and > be a strict order. The pair (&, >) is said to be a semi-
reduction pair if & is closed under leaf-contexts and substitutions, > is well-founded and closed under
substitution, and either &·> ⊆ > or >·& ⊆ > holds. A semi-reduction pair (&, >) is said to be a reduction
pair if & is closed under contexts. For a set C of pairs of marked terms, we say that (&, >) satisfies the
marked condition in C if vθ & (vθ)] for any θ and u] → v] ∈ C such that root(v) ∈ V.

The argument filtering method, which generates a reduction pair from a given reduction order, was
introduced in first-order TRSs by Arts and Giesl [3] in order to design reduction pairs. The method
was extended to STRSs [20]. Although the path order based on strong computability in [21] generates
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reduction pairs, the path order based on the simplification order in [20] does not generate reduction pairs
and only generates semi-reduction pairs.

Theorem 3.15 Let R be an STRS and C be a set of pairs of marked terms such that root(u) /∈ V for any
u] → v] ∈ C. If there exists a reduction pair (resp. semi-reduction pair) (&, >) satisfying the following
conditions then C is non-looping.

(i) R ⊆& (resp. Rex ⊆&),

(ii) C ⊆& and C ∩> 6= ∅, and

(iii) it satisfies the marked condition in C.

Proof. Assume that there exists an infinite 〈C, −→
R
〉-chain u]

0 → v]
0, u

]
1 → v]

1, · · ·, in which every u] →
v] ∈ C occurs infinitely many times, and let θ0, θ1, . . . be substitutions such that (viθi)] ∗−→

R
(ui+1θi+1)]

for each i. In both cases of a reduction pair and a semi-reduction pair, (viθi)] & (ui+1θi+1)] follows
from the condition (i). Since ∀i.root(ui) /∈ V, C ⊆& and & is closed under substitution, we have
(uiθi)] ≡ u]

iθi & v]
iθi for each i. From the condition (iii), we have v]

iθi & (viθi)]. Hence there exists an
infinite decreasing sequence (u0θ0)] & (v0θ0)] & (u1θ1)] & (v1θ1)] & (u2θ2)] & (v2θ2)] & · · ·. In a similar
way, we have (uiθi)] > (viθi)] for infinitely many i. This contradicts the well-foundedness of >. ¤

We next extend the subterm criterion proposed for first-order TRSs [16].

Definition 3.16 Let R be an STRS and C be a set of pairs of marked terms. We say that C satisfies
the subterm criterion if root(u), root(v) /∈ V for any u] → v] ∈ C, and there exists a function π from DR

to non-empty sequences of positive integers such that

(α) u|π(root(u)) >esub v|π(root(v)) for some u] → v] ∈ C, and

(β) the following conditions hold for any u] → v] ∈ C:

• u|π(root(u)) ≥esub v|π(root(v)),

• (u)p /∈ V for all p ≺ π(root(u)), and

• q 6= ε ⇒ (v)q ∈ CR for all q ≺ π(root(v)).

Note that the original definition of the codomain of π in [16] allows only positive integers. Our
definition, however, stipulates sequences of positive integers. The usefulness of this extension can be seen
in Example 4.20.

Theorem 3.17 Let R be an STRS and C be a set of pairs of marked terms. If C satisfies the subterm
criterion, then C is non-looping.

Proof. Assume that there exists an infinite 〈C, −→
R
〉-chain on (Targs

SN (R), Targs
SN (R))

u]
0 → v]

0, u
]
1 → v]

1, u
]
2 → v]

2, · · ·

in which every u] → v] ∈ C occurs infinitely many times, and let θ0, θ1, . . . be substitutions such that
(viθi)] ∗−→

R
(ui+1θi+1)] and uiθi, viθi ∈ Targs

SN (R). Denote π(root(ui)) by pi for each i. Since (viθi)] ∗−→
R

(ui+1θi+1)], we have root(vi) = root(ui+1). From the last two condition in (β) of the subterm criterion,
we have (viθi)|pi+1

∗−→
R

(ui+1θi+1)|pi+1 for each i. Hence, from the first condition in (β) of the subterm
criterion, we have

(u0θ0)|p0 ≥esub (v0θ0)|p1
∗−→
R

(u1θ1)|p1 ≥esub (v1θ1)|p2
∗−→
R

· · · .

From the condition (α) of the subterm criterion, this sequence contains infinitely many >esub. Since
>esub is well-founded and >esub ·−→R ⊆ −→

R
· >esub, there exists an infinite rewriting relation starting from

(u0θ0)|p0 . Since p0 is non-empty, there exists a positive integer j such that j ¹ p0. Since SN(R, (u0θ0)|j)
follows from u0θ0 ∈ Targs

SN (R), we have SN(R, (u0θ0)|p0). It is a contradiction. ¤

By applying Theorem 3.15 and 3.17 to Theorem 3.13, we obtain the following methods for proving
the termination of STRSs.
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Theorem 3.18 Let R be an STRS such that DPSN(R) is finite. If each C ∈ RCSN(R) satisfies one of
the following properties then R is terminating.

• There exists a reduction pair (&, >) such that R ∪ C ⊆&, C∩ >6= ∅ and it satisfies the marked
condition in C.

• There exists a semi-reduction pair (&, >) such that Rex ∪ C ⊆&, C∩ >6= ∅ and it satisfies the
marked condition in C.

• C satisfies the subterm criterion.

This theorem yields a method for proving termination. It is, however, not sufficiently practical. In
fact, this theorem does not prove the termination of Rfoldl, because we do not know any method to
design (semi-)reduction pairs that satisfy the properties required by this theorem. In the next section,
we will enhance this theorem using strong computability.

4 New Dependency Pair Method based on Strong Computabil-
ity

In this section, we propose a new dependency pair method based on strong computability, called the SC-
dependency pair method. Intuitively, the SN-dependency pair method in [20] analyzes a dynamic recursive
structure based on function-call dependency relationships, while the SC-dependency pair method analyzes
a static recursive structure based on definition dependency relationships. As a result the SC-dependency
pair method ignores terms headed by a higher-order variable, and hence the method is powerful and
efficient. On the other hand, the SC-dependency pair method cannot be applied to arbitrary STRSs,
because strong computability is not closed under the subterm relation. Hence we provide the notion of
plain function-passing STRSs, for which the SC-dependency pair method works well, and by which many
non-artificial functional programs can still be represented.

4.1 Strong Computability

First of all, we define strong computability.

Definition 4.1 For each STRS R, we define the set ×(R) of used product types as α ∈ ×(R) iff α is a
product type and there exist l → r ∈ R and z ∈ V ar(r) such that τ(z) = α. A term t is said to be
strongly computable in R if SC(R, t) holds, which is inductively defined on simple types as follows:

• in case of τ(t) ∈ B ∪ ×(R), SC(R, t) is defined as SN(R, t),

• in case of τ(t) = α1 × · · · × αn and τ(t) /∈ ×(R), SC(R, t) is defined as SN(R, t) and SC(R, ti) for
any ti such that t ∗−→

R
(t1, . . . , tn), and

• in case of τ(t) = α → β, SC(R, t) is defined as
(∀u ∈ Tτ (Σ,V)) (SC(R, u) ∧ τ(u) = α ⇒ SC(R, t[u])).

For each STRS R, we define TSC(R) = {t ∈ Tτ (Σ,V) | SC(R, t)} and Targs
SC (R) = {t ∈ Tτ (Σ,V) | SC(R, u)

for all u ∈ args(t)}.

In the case of τ(t) = α1 × · · · × αn, the type τ(ti) = αi is smaller than τ(t), and in the case of
τ(t) = α → β, the types τ(u) = α and τ(t[u]) = β are smaller than τ(t). Hence the definition above is
well-defined.

Strong computability is not closed under the subterm relation: for a term t ≡ a[t1, . . . , tn] with
τ(a) = α1 → · · · → αn → α, the type αi of a subterm ti may not be smaller than α. Product types,
however, are an exceptional case: for a term t ≡ (t1, . . . , tn) with τ(t) = α1 × · · · × αn, the type αi of a
subterm ti is smaller than α1 × · · · × αn.

In order to combine the dependency pair method with strong computability, the compatibility between
structures of terms and types is the most important and difficult task. In order to strengthen the SC-
dependency pair method, it is ideal to guarantee the strong computability of subterms as far as possible.
Hence product types are treated specially in the definition above. This topic will be further discussed in
Example 4.4.

We now present the basic properties of strong computability.
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Lemma 4.2 Let t be a term such that τ(t) = α1 → · · · → αn → α, α /∈ Sfun and ¬SC(R, t). Then,
there exist terms ui (1 ≤ i ≤ n) such that ∀i.(τ(ui) = αi ∧ SC(R, ui)) and ¬SC(R, t[u1, . . . , un]).

Proof. We prove the claim by induction on n. The case n = 0 is trivial. Suppose that n > 0. From
¬SC(R, t), there exists a term u1 such that τ(u1) = α1, SC(R, u1) and ¬SC(R, t[u1]). From τ(t[u1]) =
α2 → · · · → αn → α and the induction hypothesis, there exist terms u2, . . . , un such that ∀i ≥ 2.(τ(ui) =
αi ∧ SC(R, ui)) and ¬SC(R, t[u1][u2, . . . , un]). ¤

Lemma 4.3 For any STRS R, the following properties hold:

(1) Any variable z with τ(z) = α is strongly computable, for all α ∈ S.

(2) SC(R, t) ∧ τ(t) = α ⇒ SN(R, t), for all α ∈ S.

(3) SC(R, t) ∧ t ∗−→
R

t′ ⇒ SC(R, t′) for all t and t′.

(4)
∧n

i=0 SC(R, ti) ⇒ SC(R, t0[t1, . . . , tn])
for all t0, t1, . . . , tn such that t0[t1, . . . , tn] ∈ Tτ (Σ,V).

Proof.

(1,2) We prove the claim by induction on α.

The case α ∈ B ∪ ×(R) is trivial.

In case of α = α1 × · · · ×αn /∈ ×(R), SN(R, t) and SN(R, z) are trivial and hence SC(R, z) is also
trivial because of z ∗−→

R
t′ ⇒ z ≡ t′.

Suppose that α = α1 → · · · → αn → β and β /∈ Sfun. From the induction hypothesis, an arbitrary
variable z1 with τ(z1) = α1 is strongly computable. Thus SC(R, t[z1]) holds. From the induction
hypothesis, t[z1] is terminating, hence so is t.

Assume that z is not strongly computable. From Lemma 4.2, there exist terms u1, . . . , un such
that ∀i(τ(ui) = αi ∧ SC(R, ui)) and z[u1, . . . , un] is not strongly computable. From the induction
hypothesis, each ui is terminating. Hence z[u1, . . . , un] is terminating. Since z[u1, . . . , un] is not
strongly computable and its type β is a non-functional type, β is a product type such that β /∈ ×(R),
and there exists a term t′ such that t′ is not strongly computable and z[u1, . . . , un] ∗−→

R
(. . . , t′, . . .).

It is a contradiction because root(l) /∈ V for all l → r ∈ R.

(3) We prove the claim by induction on τ(t). The case τ(t) /∈ Sfun is trivial. Suppose that t ∗−→
R

t′ and
τ(t) = τ(t′) = α → β. Let u be an arbitrary strongly computable term with τ(u) = α. Then
SC(R, t[u]) follows from SC(R, t). Since t[u] ∗−→t′[u] and τ(t[u]) = β, SC(R, t′[u]) follows from the
induction hypothesis. Hence SC(R, t′) holds.

(4) We prove the claim by induction on n. The case n = 0 is trivial. Suppose that n > 0. From the
induction hypothesis, SC(R, t0[t1, . . . , tn−1]) holds. Hence SC(R, t0[t1, . . . , tn]) follows from the
definition of SC. ¤

4.2 Plain Function-Passing

Strong computability is not closed under the subterm relation, because it is defined inductively over
“types”, rather than “terms”. This breaks the soundness of recursive structure analysis using our SC-
dependency pair method, which will be introduced in the next subsection. We have already explained
that the SC-dependency pair method analyzes a static recursive structure based on definition dependency.
This means that if an STRS has no static recursive structure then it should be terminating. However,
there exist some non-terminating STRSs which have no static recursive structure. For example, the
STRS R = {foo[bar[f ]] → f [bar[f ]]} has no static recursive structure but it is non-terminating since
foo[bar[foo]]−→

R
foo[bar[foo]]. We now consider a more detailed example:

Example 4.4 Let R′
bar and Rbar be STRSs defined as follows:

R′
bar = {fst [(f, x)] → f, apply[f, x] → f [x]}

Rbar = R′
bar ∪ {bar[baz[z]] → apply[fst [z], baz[z]]}
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Here τ(x) = N , τ(f) = N → N , τ(z) = (N → N) × N , τ(fst) = (N → N) × N → N → N ,
τ(apply) = (N → N) → N → N , τ(bar) = N → N , and τ(baz) = (N → N) × N → N . Although R′

bar

is terminating, Rbar is not so.

bar[baz[(bar, x)]] → apply[fst [(bar, x)], baz[(bar, x)]]
→ apply[bar, baz[(bar, x)]]
→ bar[baz[(bar, x)]]

Notice that R′
bar and Rbar have no static recursive structure. Nevertheless R′

bar is terminating, but
Rbar is not. This fact indicates that we need some restriction described by an appropriate condition
in order to make the SC-dependency pair method sound. Moreover it is required to find a condition
satisfied by R′

bar but not satisfied by Rbar. One such restriction is made possible by the concept of plain
function-passing. This concept is concerning particular kinds of argument where higher-order variables
occur. As a consequence, we want to interpret many positions as certain kinds of argument. In order to
define plain function-passing, we present the notion of extended arguments and safe subterms. Note that
the higher-order variable f in fst [(f, x)] is an extended argument in R′

bar, but not an extended argument
in Rbar. This delicate clarification becomes possible by using the concept of used product types.

Definition 4.5 For each STRS R and term l, we define the set e args(R, l) of extended arguments as
follows:

• Any argument u ∈ args(l) is an extended argument u ∈ e args(R, l).

• If an extended argument u ∈ e args(R, l) is a tuple u ≡ (. . . , ui, . . .) such that τ(u) /∈ ×(R), then
ui ∈ e args(R, l).

For each STRS R and term l, we define the set safe(R, l) of safe subterms as follows:

safe(R, l) = e args(l) ∪ {u ∈ Sub(l) | u 6≡ l, τ(u) ∈ B ∪ ×(R)}

Example 4.6 Referencing to Example 4.4. Then used product types are ×(R′
bar) = ∅ and ×(Rbar) =

{(N → N) × N}. Hence extended arguments in fst [(f, x)] are the following:

e args(R′
bar, fst [(f, x)]) = {(f, x), f, x}

e args(Rbar, fst [(f, x)]) = {(f, x)}

Hence safe terms in fst [(f, x)] are the following:

safe(R′
bar, fst [(f, x)]) = {(f, x), f, x}

safe(Rbar, fst [(f, x)]) = {(f, x), x}

We now present the concept of plain function-passing, according to which the SC-dependency pair
method works well.

Definition 4.7 An STRS R is said to be plain function-passing if for any leaf-context C[ ] and l →
C[a[r1, . . . , rm]] ∈ R such that a ∈ V, there exists a number k (≤ m) such that a[r1, . . . , rk] ∈ safe(R, l).
A plain function-passing STRS is abbreviated to PFP-STRS.

Example 4.8 Referencing to Example 4.4 and 4.6. Then we have

f ∈ {(f, x), f, x} = safe(R′
bar, fst [(f, x)]), and

f /∈ {(f, x), x} = safe(Rbar, fst [(f, x)]).

Hence STRS R′
bar is plain function-passing, but Rbar is not so.

Every terminating STRS in this paper is plain function-passing, and many non-artificial functional
programs are expressed in plain function-passing STRSs. This fact demonstrates the versatility of the
SC-dependency pair method.

Finally, we present a lemma which will be used for analyzing dependency chains with respect to strong
computability (cf. Lemma 4.16).
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Lemma 4.9 Let R be an STRS, θ be a substitution, C[ ] be a root-context, and l → r ∈ R such that
C[l]θ ∈ Targs

SC (R). Then SC(R, uθ) holds for any u ∈ safe(R, l).

Proof. We have lθ ∈ Targs
SC (R) from C[l]θ ∈ Targs

SC (R).
Suppose that u ∈ Sub(l) such that u 6≡ l and τ(u) ∈ B ∪ ×(R). Then u ∈ Sub(u′) for some

u′ ∈ args(l). Since lθ ∈ Targs
SC (R) and Lemma 4.3(2), SN(R, u′θ) holds. Hence SN(R, uθ) holds, which

implies SC(R, uθ).
Suppose that u ∈ e args(l). We prove the claim by induction on the definition of e args. In the

case of u ∈ args(l), SC(R, uθ) follows from lθ ∈ Targs
SC (R). Suppose that (. . . , u, . . .) ∈ e args(l) and

τ((. . . , u, . . .)) /∈ ×(R). From the induction hypothesis, we have SC(R, (. . . , u, . . .)θ). Since (. . . , u, . . .)θ =
(. . . , uθ, . . .) and τ((. . . , u, . . .)θ) = τ((. . . , u, . . .)) /∈ ×(R), we have SC(R, uθ). ¤

4.3 SC-dependency pair Method

In this subsection, we present the SC-dependency pair method.

Definition 4.10 Let R be an STRS and l → r ∈ R such that τ(l) = α1 → · · · → αn → α and α /∈ Sfun.
The rule (l → r)ex↑ of the full expansion form of l → r is defined as l[z1, . . . , zn] → r[z1, . . . , zn], where
z1, . . . , zn are fresh variables with ∀i.τ(zi) = αi. We also define Rex↑ = {(l → r)ex↑ | l → r ∈ R}.

Definition 4.11 Let R be an STRS. For each l → C[a[r1, . . . , rm]] ∈ Rex↑ such that

• a ∈ DR,

• C[ ] is a leaf-context, and

• ∀k ≤ m. a[r1, . . . , rk] /∈ safe(R, l),

we define an SC-dependency pair of R as l] → a][r1, . . . , rm, z1, . . . , zn], where τ(a][r1, . . . , rm, z1, . . . , zn]) /∈
Sfun and z1, . . . , zn are fresh variables. We denote by DPSC(R) the set of all SC-dependency pairs of R.

Notice that SC-dependency pairs have no terms headed by a higher-order variable nor terms of a
functional type.

Example 4.12 Referencing to Example 3.4. Then DPSC(R′
foo) is the following:

DPSC(R′
foo) =

 foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]
foo][s[i], (x, y)] → foldl][foo[i], y, cons[(x, nil)]]
foo][s[i], (x, y)] → foo][i, z]

Comparing DPSC(R′
foo) with DPSN(R′

foo) in Example 3.4, the number of pairs has been reduced from
5 to 3, and the pairs whose right-hand side is headed by a higher-order variable are not SC-dependency
pairs. For instance, the pair foldl][f, z, cons[(x, xs)]] → f [(z, x)] is not in DPSC(R′

foo), but it is in
DPSN(R′

foo).

Definition 4.13 A DPSC-chain (resp. DPSC-graph) is a 〈DPSC(R),→R〉-chain (resp. -graph) on
(Targs

SC (R), Targs
SC (R)). We denote by RCSC(R) the set of all 〈DPSC(R),→R〉-recursion components on

(Targs
SC (R), Targs

SC (R)).
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Example 4.14 The set RCSC(R′
foo) is the following:

foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]

foo][s[i], (x, y)] → foldl][foo[i], y, cons[(x, nil)]]

foo][s[i], (x, y)] → foo][i, z]

Hence the recursion components RCSC(R′
foo) is constructed by the following two components:

RCSC(R′
foo) =

{ {
foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]

}{
foo][s[i], (x, y)] → foo][i, z]

}
We see that RCSC(R′

foo) is much smaller and simpler than RCSN (R′
foo) in Example 3.11.

Next we present the fundamental theorem of the SC-dependency pair method. In order to do this,
we present the following two lemmas, which correspond to last two properties in Theorem 3.7 with
T = Tτ (Σ,V)\ (Tfun(Σ,V) ∪ TSC(R)) and Tl = Tr = Targs

SC (R).

Lemma 4.15 If an STRS R is not terminating then the set (Tτ (Σ,V)\ (Tfun(Σ,V)∪TSC(R))) ∩ Targs
SC (R)

is not empty.

Proof. From the contraposition of Lemma 4.3(2), Tτ (Σ,V) \ TSC(R) 6= ∅ holds.
Let s be a minimal term in Tτ (Σ,V) \ TSC(R) with respect to term size. Then s ∈ Targs

SC (R) holds
because the strong computability of each s′ ∈ args(s) follows from the minimality of s. Hence we have
Targs

SC (R) \ TSC(R) 6= ∅.
Let t be a minimal term in Targs

SC (R) \ TSC(R) with respect to type size. Assume that t ∈ Tfun(Σ,V).
Let τ(t) = α → β and u be an arbitrary strongly computable term with τ(u) = α. Since t ∈ Targs

SC (R)
and u ∈ TSC(R), we have t[u] ∈ Targs

SC (R). From τ(t[u]) = β and the minimality of τ(t) = α → β, we have
t[u] /∈ Targs

SC (R) \ TSC(R), hence t[u] ∈ TSC(R). Then we have t ∈ TSC(R), which is a contradiction. Hence
t /∈ Tfun(Σ,V). Therefore we have t ∈ (Tτ (Σ,V) \ (Tfun(Σ,V) ∪ TSC(R))) ∩ Targs

SC (R). ¤

Lemma 4.16 Let R be a PFP-STRS. For any t ∈ (Tτ (Σ,V) \ (Tfun(Σ,V) ∪ TSC(R))) ∩ Targs
SC (R), there

exist l] → v] ∈ DPSC(R) and θ such that t] ∗−→(lθ)] and lθ, vθ ∈ (Tτ (Σ,V) \ (Tfun(Σ,V) ∪ TSC(R))) ∩
Targs

SC (R).

Proof. Let t ∈ (Tτ (Σ,V) \ (Tfun(Σ,V)∪TSC(R))) ∩ Targs
SC (R). Then t ∈ Targs

SN (R) follows from t ∈ Targs
SC (R)

and Lemma 4.3(2).

• Consider the case that t /∈ TSN(R). Since t ∈ Targs
SN (R) \ Tfun(Σ,V), there exist l → r ∈ Rex↑ and

θ′ such that t] ∗−→(lθ′)], ¬SN(R, lθ′) and ¬SN(R, rθ′). Hence ¬SC(R, lθ′) and ¬SC(R, rθ′) follows
from Lemma 4.3(2).

• Consider the case that t ∈ TSN(R). Since t /∈ TSC(R) ∪ Tfun(Σ,V), τ(t) is a product type not in
×(R), and there exists a term (u1, . . . , un) such that t ∗−→(u1, . . . , un) and ¬SC(R, ui) for some i.
Since t ∈ Targs

SC (R), root(t) is not tp but a defined symbol. Thus there exist l → r ∈ Rex↑ and θ′

such that t] ∗−→(lθ′)] and lθ′−→rθ′ ∗−→(u1, . . . , un). Here ¬SC(R, lθ′) and ¬SC(R, rθ′) holds.

In both cases above, we have {v′ ∈ Sub(r) | ¬SC(R, v′θ′)} 6= ∅ since r ∈ Sub(r) and ¬SC(R, rθ′). Let
v′ ≡ a[r1, . . . , rm] be a minimal size term in this set. Then SC(R, riθ

′) holds for every i. From Lemma
4.2, there exist v1, . . . , vk ∈ TSC(R) (k ≥ 0) such that τ(v′θ′[v1, . . . , vk]) /∈ Sfun and ¬SC(v′θ′[v1, . . . , vk]).
Here v′θ′[v1, . . . , vk] ∈ Targs

SC (R).
Now let v ≡ a[r1, . . . , rm, z1, . . . , zk] for fresh variables z1, . . . , zk and we define θ(x) by vi if x = zi (i =

1, . . . , k); otherwise by θ′(x). Then we have lθ = lθ′ and vθ = v′θ′[v1, . . . , vk]. Since lθ = lθ′ ∈ Targs
SC (R) by

t ∈ Targs
SC (R) and Lemma 4.3(3), we have lθ ∈ (Tτ (Σ,V) \ (Tfun(Σ,V)∪TSC(R))) ∩ Targs

SC (R). Because vθ ∈
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(Tτ (Σ,V) \ (Tfun(Σ,V) ∪ TSC(R))) ∩ Targs
SC (R) also holds, it suffices to show that l] → v] ∈ DPSC(R). We

prove this by contradiction. Assume that l] → v] /∈ DPSC(R). Let l ≡ l′[z′1, . . . , z
′
p] and r ≡ r′[z′1, . . . , z

′
p]

such that l′ → r′ ∈ R and z′1, . . . , z
′
p are fresh variables.

• Assume that a ∈ V ar(l′). Since R is plain function-passing, there exists a number k (≤ m) such that
a[r1, . . . , rk] ∈ safe(R, l′). From Lemma 4.9 and 4.3(4), we have SC(R, vθ). This is a contradiction.

• Assume that a = z′i for some i. Then a ∈ args(l). Since lθ ∈ Targs
SC (R), SC(R, aθ) holds. From

Lemma 4.3(4) we have SC(R, vθ). This is a contradiction.

• Assume that a ∈ CR. Since r1θ, . . . , rmθ, v1, . . . , vk are terminating from Lemma 4.3(2), SN(R, vθ)
holds. Since vθ /∈ Tfun(Σ,V) ∪ TSC(R), a must be tp and there exists a term (v′1, . . . , v

′
p) such that

vθ ∗−→
R

(v′1, . . . , v
′
p) and ¬SC(R, v′

i) for some i. Since root(v) = a ∈ CR and vθ ∈ Targs
SC (R), each

SC(R, v′
i) follows from Lemma 4.3(3). This is a contradiction.

• Assume that a ∈ DR and a[r1, . . . , rk] ∈ safe(R, l′) for some k ≤ m. From Lemma 4.9, we have
SC(R, a[r1, . . . , rk]θ). From Lemma 4.3(4), SC(R, vθ) holds. This is a contradiction. ¤

By applying Lemmas 4.15 and 4.16 to Theorem 3.7 with T = Tτ (Σ,V) \ (Tfun(Σ,V) ∪ TSC(R)) and
Tl = Tr = Targs

SC (R), we obtain the fundamental theorem of the SC-dependency pair method.

Theorem 4.17 Let R be a PFP-STRS. If there exists no infinite DPSC(R)-chain then R is terminating.

Note that the (⇐)-part does not hold in the theorem. The SC-dependency pair method therefore has
a theoretical limitation (as described in the concluding remarks).

We also obtain the following theorem from this theorem and Theorem 3.12.

Theorem 4.18 Let R be a PFP-STRS such that DPSC(R) is finite. If all recursion components in
RCSC(R) are non-looping then R is terminating.

Finally, by applying Theorem 3.15 and 3.17 to this theorem, we obtain a powerful and efficient method
for proving termination. Note that the marked condition for (semi-)reduction pairs always holds because
SC-dependency pairs have no terms headed by a higher-order variable.

Theorem 4.19 Let R be a PFP-STRS such that DPSC(R) is finite. If any C ∈ RCSC(R) satisfies one
of the following properties, then R is terminating.

• There exists a reduction pair (&, >) such that R ∪ C ⊆& and C∩ >6= ∅.

• There exists a semi-reduction pair (&, >) such that Rex ∪ C ⊆& and C∩ >6= ∅.

• C satisfies the subterm criterion.

4.4 Examples

In this subsection, we give some examples in order to demonstrate the power of the SC-dependency pair
method. Note that every STRS in this subsection is plain function-passing, because each higher-order
variable of the right hand sides occurs in an argument position on the left hand side.

Example 4.20 We show the termination of the PFP-STRS Rsum∪Rprod, displayed in the introduction.
DPSC(Rsum ∪ Rprod) is the following:

DPSC(Rsum ∪ Rprod) =



+][(x, s[y])] → +][(x, y)]
×][(x, s[y])] → +][(×[(x, y)], x)]
×][(x, s[y])] → ×][(x, y)]
foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]
sum][zs] → foldl][+, 0, zs]
sum][zs] → +][z]
prod][zs] → foldl][×, s[0], zs]
prod][zs] → ×][z]
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The set RCSC(Rsum ∪ Rprod) is constructed by the following three components:

RCSC(Rsum ∪ Rprod) =


{

+][(x, s[y])] → +][(x, y)]
}{

×][(x, s[y])] → ×][(x, y)]
}{

foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]
}

By π(+) = 1 · 2, the first component satisfies the subterm criterion. By π(×) = 1 · 2, the second
component satisfies the subterm criterion. By π(foldl) = 3, the third component satisfies the subterm
criterion. Hence the termination of Rsum ∪ Rprod is guaranteed by Theorem 4.19.

Example 4.21 Since all C ∈ RCSC(R′
foo), displayed in Example 4.12 and 4.14, satisfies the subterm

criterion, the termination of R′
foo is guaranteed by Theorem 4.19. Actually, each component satisfies the

subterm criterion by setting π to the underlined parts below (π(foldl) = 2 and π(foo) = 1):

{foldl][f, y, cons[(x, xs)]] → foldl][f, f [(x, y)], xs]}
{foo][s[i], (x, y)] → foo][i, z]}

Example 4.22 The right-folding function foldr, which is also a built-in function of the functional pro-
graming language SML, can be represented as the following PFP-STRS:

Rfoldr =
{

foldr[f, y, nil] → y
foldr[f, y, cons[(x, xs)]] → f [(x, foldr[f, y, xs])]

Then DPSC(Rfoldr) = {foldr][f, y, cons[(x, xs)]] → foldr][f, y, xs]} and RCSC(Rfoldr) = {DPSC(Rfoldr)}.
By π(foldr) = 3, the component satisfies the subterm criterion. Hence the termination is guaranteed by
Theorem 4.19.

Example 4.23 Typical higher-order functions map and filter can be represented as the following PFP-
STRSs:

Rmap =
{

map[f, nil] → nil
map[f, cons[(x, xs)]] → cons[(f [x], map[f, xs])]

Rflt =


if [true, x, y] → x

if [false, x, y] → y
filter[p, nil] → nil

filter[p, cons[(x, xs)]] → if [p[x], cons[(x, filter[p, xs])], filter[p, xs]]

The set RCSC(Rmap ∪ Rflt) is constructed by the following two components:

RCSC(Rmap ∪ Rflt) =
{ {

map][f, cons[(x, xs)]] → map][f, xs]
}{

filter][p, cons[(x, xs)]] → filter][p, xs]
}

By setting π to the underlined parts (π(map) = π(filter) = 2), any component satisfies the subterm
criterion. Hence the termination of Rmap ∪ Rflt is guaranteed by Theorem 4.19.

Example 4.24 We show the termination of R′
bar, displayed in Example 4.4. Since DPSC(R′

bar) = ∅, we
have RCSC(R′

bar) = ∅. Hence the termination of R′
bar is guaranteed by Theorem 4.19.

This example is a typical case for which the SC-dependency pair method is particularly effective
because it is not necessary for the SC-dependency method to analyze higher-order variables. Simply-
typed combinatory logic is also such a case.

Example 4.25 For each α, β, γ ∈ S, we define Rα,β,γ as follows:

Rα,β,γ =
{

Sα,β,γ [f, g, x] → f [x, g[x]]
Kα,β [x, y] → x

where τ(Sα,β,γ) = (α → β → γ) → (α → β) → α → γ and τ(Kα,β) = α → β → α. We define STRS
RCL, which is a representation of simply-typed combinatory logic, as follows:

RCL =
∪

α,β,γ∈S

Rα,β,γ

Since no defined symbol occurs in any right-hand side, we have DPSC(RCL) = ∅, hence RCSC(RCL) = ∅.
Thus the termination of RCL follows from Theorem 4.19.
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Although several proofs of the termination of simply-typed combinatory logic is known [15], our proof
is very elegant.

5 Concluding Remarks

In this paper we reformulated the SN-dependency pair method in [20] and presented the SC-dependency
pair method which is based on strong computability. Since there are STRSs on which the SC-dependency
pair method fails (cf. Example 4.4), we propose the notion of plain function-passing STRSs on which the
SC-dependency pair method always succeeds. This restriction is acceptable since many natural functional
programs are plain function-passing.

Since both of the SN-dependency pair and the SC-dependency pair methods are based on the same
abstract framework introduced in Section 3, we can see that the only practical difference is in the definition
of dependency pairs. Intuitively, the SN-dependency pair method analyzes a dynamic recursive structure
based on function-call dependency relationships, while the SC-dependency pair method analyzes a static
recursive structure based on definition dependency relationships. The SC-dependency pair method is
thus able to ignore terms headed by a higher-order variable. As a result, the SC-dependency pair method
is extremely powerful and efficient. Indeed, it proves the termination of simply-typed combinatory logic
from two facts which can be verified easily: static recursive structure does not exist, and each higher-order
variable occurs in an argument on the left-hand side (cf. Example 4.25). In [30], we also proposed a
dependency pair method, which analyzes a static recursive structure. However, this result did not consider
strong computability, and hence it required very strong restriction: strongly linear or non-nested.

When verifying termination using the SN-dependency pair method, we cannot ignore terms which are
headed by a higher-order variable and thus difficult to handle. One solution is to dynamically analyze
the recursive structure (taking into consideration all functions that can be substituted into higher-order
variables). This is known as parameterized programming [14] or defunctionalization [28]. The method
in [2] is based on such an approach. However, the dynamical analysis approach not only may give rise
to a large amount of computation, but also requires an entire analysis whenever function definitions
are added. Consequently, This approach is not suitable for incremental proofs, since in this case its
capabilities degrades considerably. Moreover, this approach cannot be applied to infinite systems (cf.
Example 4.25).

On the other hand, in some cases the SN-dependency pair method is still valuable, because the inverse
of Theorem 4.17 does not hold, in contrast to Theorem 3.8. This means that the SC-dependency pair
method has a theoretical limitation, which is not required in the SN-dependency pair method. For
example, let Rfix be the following PFP-STRS:

Rfix = {fix[f, x] → f [fix[f ], x]}

Although Rfix is terminating, the infinite sequence composed of the dependency pair fix][f, x] →
fix][f, z] ∈ DPSC(Rfix) is an infinite SC-dependency chain. Hence the SC-dependency pair method
cannot prove the termination of Rfix. Although we feel that such cases are rare, they require clarifica-
tion and we will consider this in future works.

Regarding other generic methods that can prove the termination of simply-typed combinatory logic,
we are aware of the computational closure proposed by Jouannaud and Rubio [17], and its extension
proposed by Blanqui [4]. This concept is based on strong computability and recursive path order [6]. In
first-order settings, the recursive path order as a reduction order, and the dependency pair method work
in complement to each other, through an argument filtering method which generates a reduction pair from
a given reduction order [3]. The argument filtering method for STRSs was proposed in [20]. However,
since the argument filtering method eliminates unnecessary subterms and hence destroys type structure,
a restriction is necessary in order to use the recursive path order based on strong computability [21].
We intend to design an argument filtering method applicable to this computational closure. Moreover,
the notions of accessible subterms in [4] which are an extension of computational closure in [17], and
safe subterms (Definition 4.5) originate from the same motivation: to guarantee strong computability of
subterms as far as possible. On the other hand, there is no concept corresponding to the used product
type (cf. Definition 4.1) in accessible subterms, which is necessary for the SC-dependency pair method
(cf. Example 4.4). We intend to clarify the difference between accessible subterms and safe subterms in
future work.

16



Further research will extend the SC-dependency pair method to STRSs with λ-abstractions and/or
polymorphic types. Further research will also involve formalizing and implementing methods of proof
proposed for first-order TRSs and based on SC-dependency pairs, e.g., usable rules [16, 35]3 and incre-
mental proofs [39]. We also hope to see the results of this research applied to inductive reasoning [22]
and the Knuth-Bendix procedure [23] on STRSs.
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