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Abstract

Recently, Arts and Giesl introduced the notion of dependency pairs, which gives effective
methods for proving termination of term rewriting systems (TRSs). In this thesis, we
extend the notion of dependency pairs to AC-TRSs, and introduce new methods for
effectively proving AC-termination. Since it is impossible to directly apply the notion of
dependency pairs to AC-TRSs, we introduce the head parts in terms and show an analogy
between the root positions in infinite reduction sequences by TRSs and the head positions
in those by AC-TRSs. Indeed, this analogy is essential for the extension of dependency
pairs to AC-TRSs. Based on this analogy, we define AC-dependency pairs.

To simplify the task of proving termination and AC-termination, several elimination
transformations such as the dummy elimination, the distribution elimination, the gen-
eral dummy elimination and the improved general dummy elimination, have been pro-
posed. In this thesis, we show that the argument filtering method combined with the
AC-dependency pair technique is essential in all the elimination transformations above.
We present remarkable simple proofs for the soundness of these elimination transforma-
tions based on this observation. Moreover, we propose a new elimination transformation,
called the argument filtering transformation, which is not only more powerful than all
the other elimination transformations but also especially useful to make clear an essential
relationship among them.
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Chapter 1

Introduction

Computability (Church’s Thesis): The notion of computable function was essen-
tially born in the proof of Gödel’s Incompleteness Theorems [24] and was formalized by
Church, Kleene, Turing and others in the 1930’s. Intuitively, a computable function is a
function whose values can be calculated in some kind of automatic or effective way. It is
well known that there exist functions that are not computable. From the point of view
of computer science, this fact means that there exist functions that we can not program.
As rapid advances of computer technology, the study of computability greatly gains its
importance in various fields.

In order to give a rigorously mathematical definition of the intuitive notion of com-
putable function, several computation models were proposed in 1936: recursive functions
by Kleene [25, 36, 37]1, λ-calculus by Church [10], and Turing machine by Turing [65].
It is well-known that these computation models characterize the same class for com-
putable function2. On the basis of these evidence, most mathematicians have accepted
the claim that these characterizations give a satisfactory formalization for computable
function, though these definitions of computable function have no generality separated
from a particular computation model. This claim is often referred to as Church’s Thesis.

(AC-)Term Rewriting Systems: Term rewriting systems (TRSs) can be regarded as
a computation model, that is, all computable functions are definable by term rewriting
systems. In term rewriting systems, terms are reduced by using a set of directed equations,
called rewrite rules. The most striking feature is that term rewriting systems themselves
can be regarded as functional programming languages. For example, in term rewriting
systems with the constant 0 and the successor function s, addition of natural numbers is
defined as follows:

R =

{

x+ 0 → x
x+ s(y) → s(x+ y)

1The notion of recursive functions was proposed by Gödel in 1934 based on a suggestion by Herbrand
[25]. After that Kleene improved the notion by introducing a minimalization operator, called µ-operator,
and formalized the current form in 1936 [36, 37].

2Kleene proved the equivalence between recursive functions and computable functions by λ-calculus
[38], and Turing proved the equivalence between computable functions by λ-calculus and by Turing
machine [66].
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By applying rules in this term rewriting system, we can evaluate the sum of 1 and 2 as
follows:

s(0) + s(s(0))→
R
s(s(0) + s(0))→

R
s(s(s(0) + 0))→

R
s(s(s(0)))

Term rewriting systems have various applications in many fields of computer science
and mathematics, that is, to represent abstract interpreters of functional programming
languages and to model formal manipulating systems used in various applications, such as
program optimization, program verification and automatic theorem proving [6, 18, 28, 39].

The effectiveness of term rewriting systems to theorem proving is worth mentioning.
In fact, the field of term rewriting got a decisive impact by the pioneering paper by
Knuth and Bendix, in which they designed completion procedures, called Knuth-Bendix
procedure, that automatically solves word problems in universal algebra [40]. For example,
on Knuth-Bendix procedure, starting with the axiom of group







0 + x = x
(−x) + x = 0

(x+ y) + z = x+ (y + z)

produces a terminating and confluence term rewriting system as follows:































































0 + x → x
(−x) + x → 0

(x+ y) + z → x+ (y + z)
(−x) + (x+ y) → y

x+ 0 → x
−0 → 0

−(−x) → x
x+ (−x) → 0

x+ ((−x) + y) → y
−(x+ y) → (−y) + (−x)

In a confluent term rewriting system, the answer of a given term is unique, that is, the
final result does not depend on computation procedures. Moreover, if every computation
procedure always terminates, the system solves the word problem for the corresponding
equational theory. Hence, using the obtained term rewriting system, we can automatically
solve the word problems for group theory.

Knuth-Bendix procedure has the limitation that can not handle a commutativity equa-
tion, say, x + y = y + x, because the term rewriting system {x + y → y + x} induced
from the equation is essentially not terminating. To avoid this difficulty, associative-
commutative term rewriting systems (AC-TRSs) were introduced, in which associative
and commutative equations are not represented as rewrite rules, instead we take them
into account when applying some other rewrite rules [48, 49, 60].

Proving (AC-)Termination Termination of TRSs is in general an undecidable prop-
erty. Nevertheless, it is often necessary to prove the termination for a particular system.
For example, the termination property is essentially important in Knuth-Bendix proce-
dure. To prove termination, we commonly design a reduction order by which all rules are
ordered.
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The most important study for designing a reduction order is the notion of simplifica-
tion order introduced by Dershowitz [15]. Based on the notion several reduction orders
are introduced. The recursive path order was introduced by Dershowitz [15, 16]. The
lexicographic path order was introduced by Kamin and Lévy [32]. The recursive decom-
position order was introduced by Jouannaud, Lescanne and Reinig [31]. An overview and
comparison of simplification orders have been given by Steinbach [63, 64]. Furthermore,
several AC-compatible simplification orders have been proposed based on simplification
orders. The order introduced by Cherifa and Lescanne is based on polynomial interpre-
tation [9]. The order introduced by Bachmair and Plaisted based on the recursive path
order with flattening [7], and it has been extended by Bachmair [8], by Delor and Puel
[14], by Kapur, Sivakumar and Zhang [34, 35], by Rubio and Nieuwenhuis [61, 62], and
so on.

On the other hand, proving termination by simplification orders has a theoretical
limitation. In fact, there exist terminating TRSs that can not be essentially proved by
simplification orders. In order to prove termination of such TRSs, we have two methods.
One is a transformation method that transforms a given TRS into a TRS whose termi-
nation is easier to prove than the original one. The representative transformations are
elimination transformations. The dummy elimination [20], the distribution elimination
[53, 67], the general dummy elimination [21] and the improved general dummy elimination
[57] are examples of elimination transformations. Furthermore, the dummy elimination
and the distribution elimination are extended to AC-TRSs in [22] and [58], respectively.
Another one is the dependency pair method, introduced by Arts and Giesl, that is a
method to check a dependency of function call sequences in evaluating processes of TRSs
as programs [1, 2]. Dependency pairs are useful not only proving termination but also
analyzing an infinite reduction sequence. Furthermore, separate extensions of the depen-
dency pair to AC-TRSs were independently done by us in [43] and by Marché and Urbain
in [52].

Structure of the Thesis: The next chapter gives the preliminaries needed later on.
In Chapter 3, we review results about dependency pairs. First, we recall basic notions
and fundamental results on dependency pairs. The method of dependency pairs compares
rewrite rules and dependency pairs by a weak reduction order or by a weak reduction pair,
which play an important role on the method of dependency pair, instead of a reduction
order. In Section 3.2, we introduce the notion of weak reduction order and its application
for proving termination. We explain two methods to design weak reduction orders. One
is the argument filtering method, which allows us to make a weak reduction order from an
arbitrary reduction order. Another one is the polynomial interpretation method. A set
of dependency pairs itself makes a TRS. However, a TRS, the set of its dependency pairs
and the union of them do not accurately agree on the termination property. In Section
3.3, we present a hierarchy for the termination property among these systems. In Section
3.4, we introduce the dependency graph, that gives a more powerful method for analyzing
an infinite reduction sequence.

In Chapter 4, we extend the notion of dependency pairs to AC-TRSs. It is impossible
to directly apply the notion of the dependency pair to AC-TRSs. In Section 4.1, we show
this difficulty through an example. To avoid this difficulty we introduce the head parts
in terms and show an analogy between the root positions in infinite reduction sequences
by TRSs and the head positions in those by AC-TRSs. Indeed, this analogy is essential
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for the extension of dependency pairs to AC-TRSs. Based on this analogy, we define AC-
dependency pairs and AC-dependency chains. In Section 4.2, we introduce the argument
filtering method, which generates a weak AC-reduction order and a weak AC-reduction
pair. The original idea of the argument filtering method for TRSs without AC-function
symbols was first proposed by Arts and Giesl [5, 23]. To analyze other proving methods
for termination, the method was slightly improved by combining the subterm relation
[46]. We extend these methods to AC-TRSs. Our extension gives a design of a weak
AC-reduction order and a weak AC-reduction pair from an arbitrary AC-reduction order.
Moreover, in order to strengthen the power of the argument filtering method, we improve
the method in two directions. One is the lexicographic argument filtering method, in which
argument filtering functions are lexicographically combined to compare AC-dependency
pairs. Another one is an extension over multisets. In the argument filtering method on
AC-TRSs, any argument filtering function must be compatible to AC-equations. We relax
this restriction using the extension over multisets. These methods are effective for proving
not only AC-termination but also termination of TRSs.

In Chapter 5, we study the relation between the argument filtering method and various
elimination transformations. The key of our result is the observation that the argument
filtering method combined with the dependency pair technique is essential in all elimina-
tion transformations. Indeed, we present remarkable simple proofs for the soundness of
these elimination transformations based on this observation, though the original proofs
presented in the literatures [20, 21, 22, 53, 57, 58, 67] developed rather different methods
respectively. This observation also leads us to a new powerful elimination transformations,
called the argument filtering transformation, which is not only more powerful than all the
other elimination transformations but also especially useful to make clear an essential
relation hidden behind these methods.
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Chapter 2

Preliminaries

In this chapter, we present the basic notions used in this thesis about orders, term rewrit-
ing systems and AC-term rewriting systems. More details can be found in Baader and
Nipkow [6], Dershowitz and Jouannaud [18], and Klop [39].

2.1 Binary Relations

First let us remark that we assume familiarity with basic mathematical no(ta)tions and
terminologies about functions, sets, pairs and so on.

2.1.1 Binary Relations and Orders

Definition 2.1.1 A binary relation on a set A is a subset of A × A. For any binary
relation Υ on a set A, we write a1Υa2 instead of (a1, a2) ∈ Υ. The composition of binary
relations Υ1 and Υ2 on a set A, denoted by Υ1 ◦Υ2, is defined as follows:

Υ1 ◦Υ2 = {(a, a′′) | ∃a′. aΥ1a
′ ∧ a′Υ2a

′′}

For any binary relation Υ on a set A and for any natural number n, we define Υn as
follows:

{

Υ0 = {(a, a) | a ∈ A}
Υn+1 = Υn ◦Υ

The inverse relation of a binary relation Υ, denoted by Υ−1, is defined by {(a′, a) | aΥa′}.
A binary relation Υ is compatible with a set R of pairs if aΥa′ for all (a, a′) ∈ R.

Definition 2.1.2 A binary relation Υ on a set A is said to be

• transitive if it satisfies a1Υa2 ∧ a2Υa3 ⇒ a1Υa3 for all a1, a2, a3 ∈ A,

• reflexive if it satisfies aΥa for all a ∈ A,

• irreflexive if it satisfies ¬(aΥa) for all a ∈ A,

• symmetric if it satisfies a1Υa2 ⇒ a2Υa1 for all a1, a2 ∈ A, and

• antisymmetric if it satisfies a1Υa2 ∧ a2Υa1 ⇒ a1 = a2 for all a1, a2 ∈ A.

5



Definition 2.1.3 The closure of a binary relation Υ with respect to a property P is the
smallest binary relation containing Υ and satisfying P . We write the reflexive closure, the
transitive closure and the reflexive-transitive closure of Υ as Υ=, Υ+ and Υ∗, respectively.

Proposition 2.1.4 Let Υ be a binary relation on a set A. Then, Υ= = Υ0 ∪ Υ, Υ+ =
⋃∞

n=1Υ
n and Υ∗ =

⋃∞
n=0Υ

n.

Definition 2.1.5 A binary relation is an equivalence relation if it is a reflexive, transitive
and symmetric. Let ∼ be an equivalence relation on a set A. For any x ∈ A, the set
{a ∈ A | x ∼ a} is called the equivalence class of x modulo ∼ and is denoted by [[x]]. The
quotient set of A modulo ∼, denoted by A/ ∼, is defined by {[[x]] | x ∈ A}.

Note that any two distinct equivalence classes on a set A are non-empty and disjoint,
and the union of all equivalence classes is equivalent to A.

Definition 2.1.6 A binary relation on a set A is a strict order, usually denoted by >,
if it is transitive and irreflexive. A binary relation on a set A is a partial order, usually
denoted by ≥, if it is reflexive, transitive and antisymmetric. A binary relation on a set
A is a quasi-order, usually denoted by &, if it is transitive and reflexive.

Definition 2.1.7 For any quasi-order &, partial order ≥ and strict order >, we write
their inverse relations &−1, ≥−1 and >−1 by ., ≤ and <, respectively. The strict part of
a quasi-order &, written by �, is defined as & \ .. The equivalence part of a quasi-order
&, written by ∼, is defined as & ∩ ..

Proposition 2.1.8 For any quasi-order &, its strict part � is a strict order and its
equivalence part ∼ is an equivalence relation.

Definition 2.1.9 A binary relation > on a set A is said to be

• well-founded if every non-empty subset of A has a minimal element,

• terminating or strongly normalizing if there exist no infinite decreasing sequences of
the form a1 > a2 > a3 > · · ·.

Here, a subset B ⊆ A has a minimal element if there exists b ∈ B such that b > a implies
a 6∈ B.

It is well known that well-foundedness and termination are equivalent concepts by the
Axiom of Choice.

2.1.2 Multiset Extension

In this subsection, we consider useful extensions for strict order and quasi-order, called
the multiset extension. First we define multisets.

Definition 2.1.10 Let A be a set. A multiset on a set A is a function M from A to
natural numbers. A multiset on a set A is a finite multiset if M(a) 6= 0 only for finitely
many a ∈ A. The set of all finite multisets on a set A is denoted by M(A).
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Definition 2.1.11 Let M1 and M2 be multisets on a set A. The relations ∈, =, ⊆ and
⊂ are defined as follows:

a ∈ M1
def
⇐⇒ 0 < M1(a)

M1 = M2
def
⇐⇒ M1(a) = M2(a) for all a ∈ A

M1 ⊆ M2
def
⇐⇒ M1(a) ≤ M2(a) for all a ∈ A

M1 ⊂ M2
def
⇐⇒ M1 6= M2 ∧M1 ⊆ M2

The operations ∪, ∩ and − on multisets are defined as follows:

M1 ∪M2
def
== (M1 ∪M2)(a) = M1(a) +M2(a)

M1 ∩M2
def
== (M1 ∩M2)(a) = min{M1(a),M2(a)}

M1 −M2
def
== (M1 −M2)(a) = max{M1(a)−M2(a), 0}

Intuitively, a multiset on a set A is a set of elements of A in which elements may have
multiple occurrences. We use standard set notation like {a, a, b} as an abbreviation of
the multisets M such that M = {a 7→ 2, b 7→ 1, c 7→ 0} on the set A = {a, b, c}. It will be
obvious from the context if we refer to a set or a multiset.

We now consider the multiset extension of given strict order on a set A, which is
a binary relation on M(A). There exist several definitions of the multiset extension
[6, 19, 29, 30]. Here, we give four definitions of the multiset extension, denoted by ≫, for
given strict order >. We have known that these definitions are equivalent [6, 30].

Definition 2.1.12 Let > be a strict order on a set A. The multiset extension ≫ is
defined as follows:

M ≫ N
def
⇐⇒ ∃X, Y ∈ M(A)

[∅ 6= X ⊆ M ∧N = (M −X) ∪ Y ∧ ∀y ∈ Y. ∃x ∈ X. x > y]

Definition 2.1.13 Let > be a strict order on a set A. The multiset extension ≫ is
defined as follows:

M ≫ N
def
⇐⇒ M 6= N ∧ ∀n ∈ N −M. ∃m ∈ M −N. m > n

Definition 2.1.14 Let > be a strict order on a set A. The multiset extension ≫ is
defined as follows:

M ≫ N
def
⇐⇒ M 6= N ∧ [∃a ∈ A. N(a) >N M(a) ⇒ ∃a′ ∈ A. a′ > a∧M(a′) >N N(a′)],

where >N is usual order on natural numbers.

Definition 2.1.15 Let > be a strict order on a set A. We define the single-step relation
on M(A) as follows:

M ≫1 N
def
⇐⇒ ∃x ∈ M. ∃Y ∈ M(A). N = (M − {x}) ∪ Y ∧ ∀y ∈ Y. x > y

The multiset extension ≫ is defined by the transitive closure of ≫1.
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Proposition 2.1.16 [19] > is a strict order on a set A if and only if its multiset extension
≫ is a strict order on M(A). Furthermore, > is well-founded if and only if ≫ is well-
founded.

Next, we define the multiset extension for quasi-orders based on that for strict orders.
Here we should prepare several notions to treat the equivalence classes.

Definition 2.1.17 Let ∼ be an equivalence relation on a set A. For any multiset M =
{a1, a2, . . . , an}, we define ME = {[[a1]], [[a2]], . . . , [[an]]}, where [[ai]] is the equivalence class
of ai modulo ∼. Let M ′ and M ′′ be multisets on a set A. The relations ∈E, =E, ⊆E and
⊂E are defined as follows:

a ∈E M ′ def
⇐⇒ [[a]] ∈ M ′

E

M ′ =E M ′′ def
⇐⇒ M ′

E
= M ′′

E

M ′ ⊆E M ′′ def
⇐⇒ M ′

E ⊆ M ′′
E

M ′ ⊂E M ′′ def
⇐⇒ M ′

E
⊂ M ′′

E

The operations ∪E, ∩E and −E on multisets are defined as follows:

M ′ ∪E M ′′ def
== M ′

E
∪M ′′

E

M ′ ∩E M ′′ def
== M ′

E
∩M ′′

E

M ′ −E M ′′ def
== M ′

E
−M ′′

E

In this thesis, we treat only AC-equation ∼
AC

as equation. Hence, it is enough to treat

AC as the subscript E. We often omit the subscript E or AC whenever no confusion arises.

Lemma 2.1.18 Let & be a quasi-order on a set A and ∼ be its equivalence part. We

define the binary relation &E on A/ ∼ by [[a1]] &E [[a2]]
def
⇐⇒ a1 & a2. Then, &E is a

quasi-order on A/ ∼.

Proof. Let [[a1]] = [[a2]]. Since a1 ∼ a2, it follows that a1 & a2. Thus &E is reflexive.
Let [[a1]] &E [[a2]] and [[a2]] &E [[a3]]. Since a1 & a2 & a3, it follows that a1 & a3. Thus,
[[a1]] &E [[a3]]. Therefore &E is transitive. �

Definition 2.1.19 Let & be a quasi-order on a set A, ∼ the equivalence part of &, &E

the binary relation on A/ ∼ defined in Lemma 2.1.18, �E the strict part of &E, and ≫
the multiset extension of �E for strict orders. We define the multiset extension ≫ for

quasi-orders by M ′ ≫ M ′′ def
⇐⇒ M ′

E
≫ M ′′

E
∨M ′

E
= M ′′

E
.

Proposition 2.1.20 [21] & is a quasi-order on a set A if and only if its multiset extension
≫ is a quasi-order on M(A). Furthermore, the strict part � of & is well-founded if and
only if the strict part ≫ of ≫ is well-founded.
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2.1.3 Lexicographic Extension

In this subsection, we consider the lexicographic extension.

Definition 2.1.21 Let > be a strict order on a set A. The lexicographic extension >lex

on lists of A is recursively defined as follows:







[a1, a2, . . . , an] >lex [] if n > 0
[a1, a2, . . . , an] >lex [a′1, a

′
2, . . . , a

′
m] if a1 > a′1

[a1, a2, . . . , an] >lex [a′1, a
′
2, . . . , a

′
m] if a1 = a′1 ∧ [a2, . . . , an] >lex [a′2, . . . , a

′
m]

Unfortunately, the well-foundedness of > does not guarantee that of >lex. In fact,
for the set A = {a, b} with a > b, there exists an infinite decreasing sequence [a] >lex

[b, a] >lex [b, b, a] >lex · · ·. We can avoid this problem by restricting the max length of
lists.

Proposition 2.1.22 > is a strict order on a set A if and only if its lexicographic exten-
sion >lex is a strict order on lists of A. Furthermore, for arbitrary positive number n, >
is well-founded if and only if >lex is well-founded on lists of A, whose length are less than
or equal to n.

2.2 Term Rewriting Systems

We introduce the basic notions of term rewriting systems.

Definition 2.2.1 A signature Σ is a finite set of function symbols, where each f ∈ Σ
is associated with natural number n, written by arity(f). A set V is an enumerable
set of variables with Σ ∩ V = ∅. The set of terms, written by T (Σ,V), is the smallest
set containing V such that f(t1, . . . , tn) ∈ T (Σ,V) whenever f ∈ Σ, arity(f) = n and
ti ∈ T (Σ,V) for i = 1, . . . , n. For a function symbol e with arity(e) = 0, we write e
instead of e(). Identity of terms is denoted by ≡. V ar(t) is the set of variables in t. The
size |t| of a term t is the number of function symbols and variables in t. A term t is linear
if every variable in t occurs only once.

Definition 2.2.2 A term position is a sequence of positive integers. We denote the empty
sequence by ε. The prefix order ≺ on term positions is defined by p ≺ q iff pw = q for
some w ( 6= ε). We recursively define (t)p the symbol at position p in t, and t|p the subterm
of t at position p as follows:







(x)ε = x
(f(t1, . . . , tn))ε = f
(f(t1, . . . , tn))i·p = (ti)p







x|ε = x
f(t1, . . . , tn)|ε = f(t1, . . . , tn)
f(t1, . . . , tn)|i·p = ti|p

Definition 2.2.3 A substitution θ : V → T (Σ,V) is a mapping. A substitution over
terms is defined as the homomorphic extension through θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn))
for f ∈ Σ and t1, . . . , tn ∈ T (Σ,V). Two terms s and t are unifiable if there exists a sub-
stitution θ such that θ(s) ≡ θ(t). We write tθ instead of θ(t).
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Definition 2.2.4 A context C is a term with occurrences of a special constant �, called
a hole. C[t1, . . . , tn] denotes the result of placing t1, . . . , tn in the n holes of C from left to
right. In particular C[ ] denotes a context containing precisely one hole and we sometimes
write C[t]p to indicate at which position the replacement takes place.

Definition 2.2.5 A term s is called a subterm of t if t ≡ C[s] for some context C. A
subterm s of t is called a proper subterm if s 6≡ t.

Definition 2.2.6 A binary relation Υ on T (Σ,V) is said to be

• monotonic if it satisfies sΥt ⇒ C[s]ΥC[t] for all contexts C[ ],

• stable if it satisfies sΥt ⇒ sθΥtθ for all substitutions θ.

A congruence relation is an equivalence, monotonic and stable relation.

Definition 2.2.7 A rewrite rule is a pair of terms, written by l → r, with l 6∈ V and
V ar(l) ⊇ V ar(r). A term rewriting system (TRS) is a finite set of rules. The set of
defined symbols in R is DF (R) = {(l)ε | l → r ∈ R} . A reduction relation →

R
is defined

as follows:

s→
R
t

def
⇐⇒ s ≡ C[lθ] ∧ t ≡ C[rθ] for some l → r ∈ R, C[ ] and θ

When we want to specify the position p of C[lθ]p in the above reductions, we write s→
R

pt.

A step of the form s→
R

εt is called a root reduction step. We often omit the subscripts R

whenever no confusion arises.

Definition 2.2.8 A TRS R is terminating if its reduction relation →
R

is terminating.

2.3 AC-Term Rewriting Systems

We introduce the basic notions of AC-term rewriting systems.

Definition 2.3.1 The set ΣAC of AC-function symbols, which have fixed arity 2, is a
subset of Σ. The binary relation ∼

AC
is the congruence relation generated by f(f(x, y), z) =A

f(x, f(y, z)) and f(x, y) =C f(y, x) for each f ∈ ΣAC.

Definition 2.3.2 Two terms s and t are AC-unifiable if there exists a substitution θ such
that θ(s) ∼

AC
θ(t). A set of terms T is AC-unifiable if there exists a substitution θ such that

θ(s) ∼
AC

θ(t) for all s, t ∈ T .

Definition 2.3.3 An AC-term rewriting system (AC-TRS) is a TRS with AC-function
symbols ΣAC. An AC-reduction relation1 →

R/AC
is defined as follows:

s →
R/AC

t
def
⇐⇒ s ∼

AC
C[lθ] ∧ t ≡ C[rθ] for some l → r ∈ R, C[ ] and θ

We often omit the subscripts R/AC whenever no confusion arises.
1In this thesis, we introduce AC-TRSs as TRSs with AC-matching. On the other hand, in usual way,

AC-TRSs have been introduced as rewriting systems over equivalence classes of terms modulo ∼
AC

, that

is, t ∼
AC

C[rθ] is used instead of t ≡ C[rθ] in the above definition. For studying AC-termination, these two

systems are essentially same. Refer to [52].
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Definition 2.3.4 An AC-TRS R is AC-terminating if its AC-reduction relation →
R/AC

is

terminating.

2.4 Reduction Order and AC-Reduction Order

The termination property of TRSs is undecidable [27], even for one-rule systems [13].
Nevertheless, it is often necessary to prove the termination for a particular system. To
prove (AC-)termination, we commonly design a (AC-)reduction order by which all rules
are ordered. Firstly we introduce the notion of (AC-)reduction orders.

Definition 2.4.1 A rewrite order > is a strict order that is monotonic and stable. A
reduction order > is a well-founded rewrite order. An AC-reduction order > is a reduction
order that is AC-compatible, i.e., s ∼

AC
s′ > t ⇒ s > t.

Theorem 2.4.2 A TRS R is terminating iff there exists a reduction order > that is
compatible with R. An AC-TRS R is AC-terminating iff there exists an AC-reduction
order that is compatible with R.

Proof. It suffices to show the cases for AC-TRSs, because each TRS is a special form of
AC-TRSs, i.e., ΣAC = ∅. Let R be an AC-TRS. From the definition, it is trivial that R is

AC-terminating iff the transitive closure of its AC-reduction relation
+
→

R/AC
is well-founded.

Moreover,
+
→

R/AC
is well-founded iff

+
→

R/AC
is an AC-reduction order, which obviously satisfies

l
+
→

R/AC
r for all l → r ∈ R. �

In order to prove termination of TRSs, several reduction orders have been proposed. In
this section, we introduce reduction orders based on polynomial interpretations [47, 50, 51]
and simplification orders [15]. We also introduce several AC-reduction orders, which are
designed based on reduction orders.

2.4.1 Polynomial Interpretation

In this subsection, we introduce methods for designing reduction orders and AC-reduction
orders based on polynomial interpretations, in which function symbols are interpreted as
polynomials over natural numbers.

Definition 2.4.3 Let A ⊆ N . We denote a polynomial fA : An → A for any f ∈
Σ with arity n. We call a polynomial fA a monotone polynomial if it depends on all
its indeterminates, i.e., for all i (1 ≤ i ≤ n), it contains a monomial (with non-zero
coefficient) in which xi occurs with an exponent at least 1. For any σ : V → A, a
polynomial interpretation [[t]]σ is defined as follows:

[[x]]σ = σ(x) and [[f(t1, . . . , tn)]]σ = fA([[t1]]σ, . . . , [[tn]]σ)

The polynomial strict order >A is defined as follows:

s >A t
def
⇐⇒ ∀σ([[s]]σ > [[t]]σ)

A monotone polynomial strict order is a polynomial strict order in which all fA is a
monotone polynomial.
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Proposition 2.4.4 [47, 50, 51] Let A ⊆ N\{0}. A monotone polynomial strict order is
a reduction order.

Proposition 2.4.5 [9] Let A ⊆ N\{0}. If for any f ∈ ΣAC we associate the polynomial
fA = f2XY + f1(X + Y ) + f0 with f2f0 = f1(f1 − 1) for some f0, f1, f2 ∈ A then the
monotone polynomial strict order is an AC-reduction order.

2.4.2 Simplification Order

The most important study for designing reduction orders is the notion of simplification
orders introduced by Dershowitz [15]. Based on the notion several reduction orders are
introduced [15, 16, 17, 31, 32, 33].

Definition 2.4.6 A simplification order > is a rewrite order on T (Σ,V) with the subterm
property, i.e., C[t] > t for all term t and non-empty context C ( 6≡ �). An AC-compatible
simplification order > is a simplification order with the AC-compatibility i.e., s ∼

AC
s′ >

t ⇒ s > t.

Note that simplification orders require the subterm property instead of the well-
foundedness. This simplifies the design of reduction orders, because mostly the subterm
property is easier to prove than the well-foundedness. We should mention that this sim-
plification does not lose the well-foundedness.

Proposition 2.4.7 [15, 16] Any simplification order is well-founded. Hence any simpli-
fication order is a reduction order2.

The proof of this proposition is based on Kruskal’s Embedding Theorem [42].

Definition 2.4.8 A TRS R is simply terminating if there exists a simplification order
compatible with R.

We define the embedding TRS Emb = {f(x1, . . . , xi, . . . , xn) → xi | f ∈ Σ, 1 ≤ i ≤
n = arity(f)}.

Proposition 2.4.9 [41] A TRS R is simply terminating if and only if R ∪ Emb is ter-
minating.

As representative simplification orders, we introduce the recursive path order and the
lexicographic path order.

Definition 2.4.10 (Recursive Path Order) Let ⊲ be a strict order on Σ, called prece-
dence. We define s >rpo t as follows:

• t ∈ V ar(s) and s 6≡ t, or

• s ≡ f(s1, . . . , sn) and t ≡ g(t1, . . . , tm), and

– f ⊲ g and s >rpo tj for all j,

2In this thesis, we restrict that the signature Σ is finite. In infinite signatures case, this proposition
does not hold. Refer to [54].
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– f = g and {s1, . . . , sn} ≫rpo {t1, . . . , tm}, or

– si ≥rpo t for some i.

Proposition 2.4.11 [15, 16] The recursive path order >rpo is a simplification order.

Definition 2.4.12 (Lexicographic Path Order) Let ⊲ be a strict order on Σ, called prece-
dence. We define s >lpo t as follows:

• t ∈ V ar(s) and s 6≡ t, or

• s ≡ f(s1, . . . , sn) and t ≡ g(t1, . . . , tm), and

– f ⊲ g and s >lpo tj for all j,

– f = g, [s1, . . . , sn] >
lex
lpo [t1, . . . , tm] and s >lpo tj for all j, or

– si ≥lpo t for some i.

Proposition 2.4.13 [17, 32] The lexicographic path order >lpo is a simplification order.

To extend the recursive order to an AC-reduction order, flattening terms were intro-
duced. The flattening term of a term t, denoted t, is the normal form of t for the rules
f(~xi, f(~yi), ~zi) → f(~xi, ~yi, ~zi) for each AC-symbol f , where x1, . . . , xn is abbreviated to ~x.
Notice that we allow that the arity of AC-function symbols does not fix. Using flattening
terms and the recursive path order >rpo, we define s >flat

rpo t by s >rpo t3. However, this
order >flat

rpo
is not always monotonic. Therefore, we need a suitable restriction on the

precedence, as shown by the following proposition.

Proposition 2.4.14 [7] If all AC-symbols are minimal in a precedence ⊲, then the order
>flat

rpo
is an AC-reduction order.

Based on this work a lot of AC-reduction orders have been proposed by Bachmair [8],
by Delor and Puel [14], by Kapur, Sivakumar and Zhang [34, 35], by Rubio and Nieuwen-
huis [61], and so on. Finally, we explain the newest AC-reduction order, introduced by
Rubio, which does not require any restriction on the precedence [62].

Definition 2.4.15 We suppose that each term is a flattening term. Let > be a binary
relation on terms, ⊲ be a precedence and f be an AC-function symbol. The multiset
extension of > w.r.t. f , denoted by ≻≻f , is defined as the smallest transitive relation
including =AC and satisfying the following property:

X ∪ {s}≻≻fY ∪ {t1, . . . , tn} if







X =AC Y, s > ti, and
if (s)ε ⋫ f then (s)ε D (ti)ε,
for all i ∈ {1, . . . , n}

For any s, #(s) is an expression with variables on the positive integers, defined as
#(f(si, . . . , sn)) = Σn

i=1#v(si), where #v(x) = x and #v(t) = 1 if t 6∈ V. We define
#(s) >poly #(t) by σ(#(s)) > σ(#(t)) for all σ : V → N\{0}, and #(s) ≥poly #(t) by

3Strictly speaking, the binary relation >rpo in s >rpo t is different from Definition 2.4.10: si ≥rpo t is
interpreted as si >rpo t or si ∼

AC

t.
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σ(#(s)) ≥ σ(#(t)) for all σ : V → N\{0}. The top-flattening of a term s w.r.t. f is a
string of terms defined as follows:

tff (s) =

{

s1, . . . , sn if s ≡ f(s1, . . . , sn)
s if (s)ε 6= f

For any s ≡ f(s1, . . . , sn), we define BigHead(s), NoSmallHead(s) and EmbNoBig(s)
as follows:

BigHead(s) = {si | (si)ε ⊲ f}

NoSmallHead(s) = {si | f ⋫ (si)ε}

EmbNoBig(s) = {f(s1, . . . , tff (tij), . . . , sn) | si ≡ h(ti1, . . . , tim), h ⋫ f}

We define s > t as follows:

• t ∈ V ar(s) and s 6≡ t, or

• s ≡ f(s1, . . . , sn) and t ≡ g(t1, . . . , tm), and

– f ⊲ g and s > tj for all j,

– f = g 6∈ ΣAC , [s1, . . . , sn] >
lex [t1, . . . , tm] and s > tj for all j,

– si ≥ t for some i,

– f = g ∈ ΣAC and s′ ≥ t for some s′ ∈ EmbNoBig(s), or

– f = g ∈ ΣAC , s ≥ t′ for all t′ ∈ EmbNoBig(t),
NoSmallHead(s)≻≻fNoSmallHead(t), and either

∗ BigHead(s) ≫ BigHead(t),

∗ #(s) >poly #(t), or

∗ #(s) ≥poly #(t) and {s1, . . . , sn} ≫ {t1, . . . , tm},

where ≥ is the union of > and ∼
AC
.

Proposition 2.4.16 [62] The binary relation > in Definition 2.4.15 is an AC-compatible
simplification order. Hence it is an AC-reduction order.
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Chapter 3

Dependency Pairs

Recently, Arts and Giesl proposed the notion of dependency pairs, which can offer effective
methods for analyzing an infinite reduction sequence [1, 2]. Intuitively, the dependency
pair is a method to check a dependency of function call sequences in evaluating processes
of term rewriting systems as programs. Using dependency pairs, we can easily show the
termination property of TRSs to which traditional techniques cannot be applied directly.
In Section 3.1, we introduce the notion and basic results.

The method of dependency pairs compares rewrite rules and dependency pairs by a
weak reduction order, which plays an important role on this method, instead of a reduction
order. In Section 3.2, we introduce the notion of weak reduction orders and its application
for proving termination. We introduce two methods to design weak reduction orders. One
is the argument filtering method, which designs a weak reduction order from an arbitrary
reduction order. Another one is the polynomial interpretation methods.

A set of dependency pairs itself is regarded as a term rewriting system. However,
a term rewriting system, the set of its dependency pairs and the union of them do not
accurately agree on the termination property. In Section 3.3, we present a hierarchy for
the termination property between these systems.

In Section 3.4, we state the dependency graph, which gives a more powerful method
for analyzing an infinite reduction sequence.

3.1 Dependency Pair and Dependency Chain

In this section, we explain dependency pairs and dependency chains.

Definition 3.1.1 Let Σ# = Σ ⊎ {f# | f ∈ Σ} be a set of function symbols. We define
the marking function # : T (Σ,V) → T (Σ#,V) by #(x) = x and #(f(t1, . . . , tn)) =
f#(t1, . . . , tn). We write t# instead of #(t).

Definition 3.1.2 Let R be a TRS. A pair 〈u#, v#〉 of terms is a dependency pair of R
if there exists a rule u → C[v] ∈ R for some C such that (v)ε ∈ DF (R). The set of
dependency pairs of R is written by DP#(R). The set of unmarked dependency pairs of
R, written by DP (R), is obtained by erasing marks of symbols in DP#(R).

Example 3.1.3 Let R = {add(x, 0) → x, add(x, s(y)) → s(add(x, y))}. Then,

DP (R) = {〈add(x, s(y)), add(x, y)〉}, DP#(R) = {〈add#(x, s(y)), add#(x, y)〉}.
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Definition 3.1.4 A sequence of dependency pairs 〈u#

0 , v
#

0 〉〈u
#

1 , v
#

1 〉〈u
#

2 , v
#

2 〉 · · · is a depen-

dency chain if there exists a substitution θ over T (Σ,V) such that v#

i θ
∗
→
R
u#

i+1θ for all i.

We assume that different dependency pair occurrences do not own jointly variables without
loss of generality.

Theorem 3.1.5 [1, 2] A TRS R is not terminating iff there exists an infinite dependency
chain of R.

Proof.

(⇐) Let 〈u#

0 , v
#

0 〉〈u
#

1 , v
#

1 〉〈u
#

2 , v
#

2 〉 · · · be an infinite dependency chain with a substitution

θ such that v#

i θ
∗
→ u#

i+1θ for all i. Since there exist Ci (i = 0, 1, 2, . . .) such that

ui → Ci[vi] ∈ R, there exists an infinite reduction sequence u0θ → C0[v0]θ
∗
→C0[u1]θ

→ C0[C1[v1]]θ
∗
→C0[C1[u2]]θ → C0[C1[C2[v2]]]θ

∗
→· · ·.

(⇒) Let t be a minimal size counterexample, i.e., t is a minimal size in all non-terminating
terms. Since any proper subterm of t is terminating, there is a rule l0 → C0[r0] ∈ R

and a substitution θ such that t#
∗
→ l#0 θ and r0θ is a minimal size counterexample

in all subterms of C0[r0]θ. From the minimality of t, xθ is terminating for all
x ∈ V ar(r0) ⊆ V ar(l0). From the minimality of r0θ, it follows that (r0)ε ∈ DF (R).
Thus, 〈l#0 , r

#

0 〉 is a dependency pair. Applying similar procedure to r0θ, we get a

rule l1 → C1[r1] ∈ R and a dependency pair 〈l#1 , r
#

1 〉 such that r#

0 θ
∗
→ l#1 θ and r1θ is

a minimal size counterexample in all subterms of C1[r1]θ. Applying this procedure
repeatedly, we obtain an infinite dependency chain 〈l#0 , r

#

0 〉〈l
#

1 , r
#

1 〉〈l
#

2 , r
#

2 〉 · · ·. �

This theorem is the key in the dependency pair method. All results of dependency
pairs are essentially based on this theorem. In the next section, we will introduce proving
methods for termination using dependency pairs.

3.2 Proving Termination by Dependency Pairs

The method of dependency pairs compares rewrite rules and dependency pairs by a weak
reduction order or by a weak reduction pair instead of a reduction order. In this section,
we firstly introduce the notion of weak reduction orders and its application for proving
termination. Next, we introduce the notion of weak reduction pairs, which is a generaliza-
tion of weak reduction orders. Lastly, we introduce two methods to design weak reduction
orders and weak reduction pairs. One is the argument filtering method[5, 23, 46]. Another
one is the polynomial interpretation method [23, 43, 52].

3.2.1 Weak Reduction Order

In this subsection, we introduce the notion of weak reduction orders and methods for
proving termination using dependency pairs.

Definition 3.2.1 A quasi-order & is a weak reduction order if & is monotonic and stable,
and its strict part � is well-founded and stable.
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The set of dependency pairs itself is a term rewriting system. Thus, the union of a
term rewriting system and its dependency pairs gives an extended term rewriting system.

Lemma 3.2.2 [5, 45] R is terminating if and only if R ∪DP#(R) is terminating.

Proof. (⇐) Trivial. (⇒) We denote by |t|# the maximal nesting number of marked
symbols in t. We write C[[t1, . . . , tn]] if each root symbol of ti is a marked symbol and
C ( 6≡ �) has no marked symbol. We denote (C[[t1, . . . , tn]])

# by C#[[t1, . . . , tn]]. Let
R′ = R ∪DP#(R). We prove that any t is terminating in R′ by induction on |t|#. In the
case |t|# = 0, it is trivial from termination of R. Suppose that |t|# > 0. We assume that
t is not terminating in R′.

(i) (t)ε is a marked symbol.
Let t ≡ C#

1 [[t11, . . . , t1n1]]. From induction hypothesis, each t1j is terminating in
R′. Since each marked symbol occurs only at the root positions of paired terms
in DP#(R), any infinite reduction sequence starting from t is expressed by t ≡

C#

1 [[t11, . . . , t1n1 ]]
∗
→
R′

C#

1 [[t
′
11, . . . , t

′
1n1

]] →
R′

C#

2 [[t21, . . . , t2n2 ]]
∗
→
R′

C#

2 [[t
′
21, . . . , t

′
2n2

]] →
R′

· · ·

such that {t′i1, . . . , t
′
ini
} ⊇ {ti+1,1, . . . , ti+1,ni+1

} and tij
∗
→
R′

t′ij for all i and j. From the

distribution of occurrences of marked symbols, we obtain an infinite reduction se-
quence C#

1 →
R′

C#

2 →
R′

C#

3 →
R′

· · ·. Since R is terminating, there are some i1, i2, . . . such

that C#

i1

∗
→
R
C#

i2
−−−→
DP#(R)

C#

i3

∗
→
R
C#

i4
−−−→
DP#(R)

C#

i5

∗
→
R
C#

i6
−−−→
DP#(R)

· · ·. Since rules of DP#(R)

are applied at only the root position in this infinite reduction sequence, there are
some Či such that Ci1

∗
→
R
Ci2 →

R
Č3[Ci3]

∗
→
R
Č3[Ci4 ] →

R
Č3[Č5[Ci5 ]]

∗
→
R
Č3[Č5[Ci6 ]] →

R
· · ·.

It is a contradiction to the termination of R.

(ii) (t)ε is an unmarked symbol.
Let t ≡ C1[[t11, . . . , t1n1 ]]. From |t1j|# ≤ |t|# and (i), each t1j is terminating in R′.
Therefore, it is a contradiction as similar to (i). �

Theorem 3.2.3 [5] For any TRS R, the following two properties are equivalent.

1. R is terminating.

2. There exists a weak reduction order & such that & is compatible with R and its
strict part � is compatible with DP#(R).

Proof.

(1 ⇒ 2) From Lemma 3.2.2, R∪DP#(R) is terminating. Thus, there exists a reduction
order > compatible with R ∪ DP#(R). Let ≥ be > ∪ ≡. Then it is trivial that
≥ is a weak reduction order such that it is compatible with R and its strict part is
compatible with DP#(R).

(2 ⇒ 1) We assume that R is not terminating. From Theorem 3.1.5, there is an infi-
nite dependency chain 〈u#

0 , v
#

0 〉〈u
#

1 , v
#

1 〉〈u
#

2 , v
#

2 〉 · · · with a substitution θ such that

v#

i θ
∗
→
R
u#

i+1θ for all i. It follows that
∗
→
R

⊆& from the assumption, the stability,

the transitivity and the monotonicity of &. For any i, we have u#

i θ � v#

i θ from the
assumption and the stability of �. Therefore, we get an infinite decreasing sequence
u#

0 θ � v#

0 θ & u#

1 θ � v#

1 θ & u#

2 θ � v#

2 θ · · ·. It is a contradiction. �
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3.2.2 Weak Reduction Pair

The method of dependency pairs is useful for not only proving termination but also
analyzing other proving methods for termination. In order to analyze transformation
methods called elimination transformations, we need extend the notion of weak reduction
order to that of weak reduction pair. In this subsection, we introduce the notion of weak
reduction pair. About analyzing elimination transformations, we will discuss in Chapter
5.

Definition 3.2.4 A pair (&, >) of binary relations on terms is a weak reduction pair1 if
it satisfies the following three conditions:

• & is monotonic and stable.

• > is stable and well-founded.

• (&, >) is compatible, i.e., & ◦ >⊆> or > ◦ &⊆>.

In the above definition, we do not assume that & is a quasi-order or > is a strict
order. This simplifies the design of a weak reduction pair. We should mention that this
simplification does not lose the generality of our definition, because for a given weak
reduction pair (&, >) we can make a weak reduction pair (&∗, >+) in which &∗ is a quasi-
order and >+ is a strict order. Note that > is a reduction order if and only if (>,>) is a
weak reduction pair, and (&,�) is a weak reduction pair for all weak reduction order &.

Theorem 3.2.5 [46] For any TRS R, the following properties are equivalent.

1. TRS R is terminating.

2. There exists a weak reduction pair (&, >) such that & is compatible with R and >
is compatible with DP (R).

3. There exists a weak reduction pair (&, >) such that & is compatible with R and >
is compatible with DP#(R).

Proof. For the case (1 ⇒ 2), we define & by
∗
→
R
, and s > t by s 6≡ t and s

∗
→
R
C[t] for some

C. Then, it is easily shown that (&, >) is a weak reduction pair satisfying the conditions.
For the case (2 ⇒ 3), it is easily shown by identifying f# with f . For the case (3 ⇒ 1),
as similar to the proof of Theorem 3.2.3 (2 ⇒ 1). �

In general for any terminating TRS R it is still open whether there exists a weak
reduction order & such that & is compatible with R and its strict part � is compatible
with unmarked dependency pairs DP (R). The proof for (1 ⇒ 2) in Theorem 3.2.3 is
based on Lemma 3.2.2. However, the same proof method can not work well for unmarked
dependency pairs, because the termination of R does not ensure that of R ∪DP (R). In
fact, for the terminating TRS R = {f(f(x)) → f(g(x)), g(x) → h(f(x))}, R ∪ DP (R)
is not terminating. The fact maintains the usefulness of marking technique. On the
other hand, the above theorem guarantees the existence of a weak reduction pair (&, >)
such that & is compatible with R and its strict part > is compatible with unmarked
dependency pairs DP (R). This fact indicates that weak reduction pairs have an extra
power as compared with weak reduction orders.

1The notion of weak reduction pairs is a generalization of the stable-strict relation ≻ss in [23] and the
irreflexive order >lift lifted from ground terms to non-ground terms in [5].
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3.2.3 Argument Filtering Method

The argument filtering method was first proposed by Arts and Giesl [5, 23]. To analyze
other proving methods for termination, the method was slightly improved by combining
the subterm relation [46]. We firstly explain the notion of argument filtering function.

Definition 3.2.6 An argument filtering function is a function π such that for any f ∈
Σ#, π(f) is either an integer i or a list of integers [i1, . . . , im] (m ≥ 0), where those integers
i, i1, . . . , im are positive and not more than arity(f). Suppose that Σ#

π = {f ∈ Σ# | π(f)
is a list } . We can naturally extend π from T (Σ#,V) to T (Σ#

π ,V) as follows:






π(x) = x
π(f(t1, . . . , tn)) = π(ti) if π(f) = i
π(f(t1, . . . , tn)) = f(π(ti1), . . . , π(tim)) if π(f) = [i1, . . . , im]

We denote by π(θ) the substitution defined as π(θ)(x) = π(θ(x)) for all x ∈ V.

We hereafter assume that if π(f) is not defined explicitly then it is intended to be
[1, . . . , arity(f)].

Definition 3.2.7 Let > be a binary relation on terms. We define s >sub t by s 6≡ t and
s ≥ C[t] for some C.

Lemma 3.2.8 Let > be a well-founded and monotonic binary relation on terms. Then
the binary relation >sub is well-founded.

Proof. We assume that there exists an infinite decreasing sequence t0 >
sub t1 >

sub t2 >
sub

· · ·. Then there exist contexts Ci (i = 1, 2, . . .) such that ti ≥ Ci+1[ti+1] for any i. From
the monotonicity, t0 ≥ C1[t1] ≥ C1[C2[t2]] · · ·. From the well-foundedness, there is some
k such that C1[· · ·Ck[tk] · · ·] ≡ C1[· · ·Ck+1[tk+1] · · ·] ≡ C1[· · ·Ck+2[tk+2] · · ·] ≡ · · ·. Thus,
there is some m such that Cm ≡ �. Hence, it follows that tm−1 ≡ tm. It is a contradiction.

�

Definition 3.2.9 Let > be a reduction order and π an argument filtering function. We
define s &π t by π(s) ≥ π(t), and s >π t by π(s) >sub π(t).

Note that s �π t iff π(s) > π(t), and �π=>π if > is an simplification order.

Lemma 3.2.10 π(θ)(π(t)) ≡ π(tθ).

Proof. We prove this lemma by induction on t. The case t ≡ x ∈ V is trivial. Suppose
that t ≡ f(t1, . . . , tn). If π(f) = i then

π(θ)(π(f(t1, . . . , tn))) ≡ π(θ)(π(ti)) ≡ π(tiθ) ≡ π(f(t1θ, . . . , tnθ)) ≡ π(f(t1, . . . , tn)θ).

If π(f) = [i1, . . . , im] then

π(θ)(π(f(t1, . . . , tn))) ≡ π(θ)(f(π(ti1), . . . , π(tim)))
≡ f(π(θ)(π(ti1)), . . . , π(θ)(π(tim)))
≡ f(π(ti1θ), . . . , π(timθ))
≡ π(f(t1θ, . . . , tnθ))
≡ π(f(t1, . . . , tn)θ). �
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Lemma 3.2.11 π(C)[π(t)] ≡ π(C[t]).

Proof. We prove this lemma by induction on C. The case C ≡ � is trivial. Suppose that
C ≡ f(. . . , ti−1, C

′, ti+1, . . .). We have the following two cases:

• π(f) = j: The case i 6= j is trivial. Suppose that i = j. Then,

π(C)[π(t)] ≡ π(f(. . . , ti−1, C
′, ti+1, . . .))[π(t)]

≡ π(C ′)[π(t)]

≡ π(C ′[t])

≡ π(f(. . . , ti−1, C
′[t], ti+1, . . .))

≡ π(C[t]).

• π(f) = [i1, . . . , im]: The case i 6∈ π(f) is trivial. Suppose that i ∈ π(f). Then,

π(C)[π(t)] ≡ π(f(t1, . . . , ti−1, C
′, ti+1, . . . , tn)[π(t)]

≡ f(ti1 , . . . , π(C
′), . . . , tim)[π(t)]

≡ f(ti1 , . . . , π(C
′)[π(t)], . . . , tim)

≡ f(ti1 , . . . , π(C
′[π(t)]), . . . , tim)

≡ π(f(t1, . . . , ti−1, C
′[t], ti+1, . . . , tn))

≡ π(C[t]).
�

Theorem 3.2.12 [5, 23] Let > be a reduction order and π an argument filtering function.
Then &π is a weak reduction order2.

Proof.

• (&π is a quasi-order): It is trivial.

• (The monotonicity of &π): From Lemma 3.2.11, s &π t ⇒ π(s) ≥ π(t) ⇒ π(C)[π(s)]
≥ π(C)[π(t)] ⇒ π(C[s]) ≥ π(C[t]) ⇒ C[s] &π C[t].

• (The stability of &π): From Lemma 3.2.10, s &π t ⇒ π(s) ≥ π(t) ⇒ π(θ)(π(s)) ≥
π(θ)(π(t)) ⇒ π(sθ) ≥ π(tθ) ⇒ sθ &π tθ.

• (The well-foundedness of �π): We assume that there exists an infinite decreasing
sequence t0 �π t1 �π t2 �π · · ·. Then, it follows that π(t0) > π(t1) > π(t2) > · · ·. It
is a contradiction to the well-foundedness of >.

• (The stability of �π): From Lemma 3.2.10, s �π t ⇒ π(s) > π(t) ⇒ π(θ)(π(s)) >
π(θ)(π(t)) ⇒ π(sθ) > π(tθ) ⇒ sθ �π tθ. �

Theorem 3.2.13 [46] Let > be a reduction order and π an argument filtering function.
Then (&π, >π) is a weak reduction pair.

2For designing a weak reduction order, the argument filtering method is essentially a special form of
recursive program schema (RPS) [11].
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Proof. In the proof of Theorem 3.2.12, we have already shown the stability and the
monotonicity of &π.

• (The well-foundedness of >π): We assume that there exists an infinite decreasing
sequence t0 >π t1 >π t2 >π · · ·. Then π(t0) >sub π(t1) >sub π(t2) >sub · · ·. It is a
contradiction to Lemma 3.2.8.

• (The stability of >π): From Lemmas 3.2.10 and 3.2.11, s >π t ⇒ π(s) ≥ C[π(t)]
⇒ π(θ)(π(s)) ≥ π(θ)(C[π(t)]) ⇒ π(sθ) ≥ C ′[π(tθ)] where C ′ ≡ π(Cθ). We assume
that π(sθ) ≡ π(tθ). Then, π(sθ) ≥ C ′[π(sθ)] ≥ C ′[C ′[π(sθ)]] · · ·. Thus, C ′ ≡ � and
C ≡ �. Hence, it follows that π(s) ≥ π(t). Since π(s) 6≡ π(t), π(s) > π(t). From
the stability of >, π(θ)(π(s)) > π(θ)(π(t)). From Lemma 3.2.10, π(sθ) > π(tθ). It
is a contradiction to π(sθ) ≡ π(tθ).

• (&π ◦ >π⊆>π): Let t0 &π t1 >π t2. Then π(t1) 6≡ π(t2) and π(t0) ≥ π(t1) ≥ C[π(t2)]
for some C. It follows π(t0) ≥ C[π(t2)]. It suffices to show that π(t0) 6≡ π(t2).
Assume that π(t0) ≡ π(t2). Then π(t2) ≥ π(t1) ≥ C[π(t2)]. Since π(t2) ≥ C[π(t2)],
it follows that C ≡ �. Moreover it follows that π(t1) ≡ π(t2). It is a contradiction.

�

3.2.4 Polynomial Interpretation

In this subsection, using polynomial interpretations, we introduce methods to design weak
reduction orders and weak reduction pairs.

Theorem 3.2.14 [43] Let A ⊆ N\{0}. We define the polynomial quasi-order &A as
follows:

s &A t
def
⇐⇒ ∀σ([[s]]σ > [[t]]σ) or ∀σ([[s]]σ = [[t]]σ).

Then, the polynomial quasi-order &A is a weak reduction order.

Proof. As similar to Theorem 3.2.12 based on Proposition 2.4.4. �

The above polynomial quasi-order cannot treat the value 0, because in the case 0 ∈ A
the above polynomial quasi-order &A is not monotonic. For example, let aA = 2, bA = 1,
fA(X, Y ) = XY , C ≡ f(�, x) and 0 ∈ A. Then, it follows that a &A b and C[a] 6&A C[b].
On the other hand, the following polynomial interpretation method can treat the value 0.

Proposition 3.2.15 [23, 52] Let A ⊆ N . We define the pair (&A, >A) as follows:

s &A t
def
⇐⇒ ∀σ([[s]]σ ≥ [[t]]σ), s >A t

def
⇐⇒ ∀σ([[s]]σ > [[t]]σ).

Then, the pair (&A, >A) is a weak reduction pair.

Note that this binary relation &A is not a weak reduction order, because its strict part
�A is not stable. For example, let aA = min(A), fA = X and θ(x) = a. Then, it follows
that f(x) �A a and f(x)θ ≡ f(a) 6�A a.

These method by polynomial interpretations can easily extend to methods by arbitrary
algebraic interpretations.
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3.3 Hierarchy of Dependency Pairs

A dependency pair can be regarded as a rewrite rule, because the pair of terms satisfies the
variable condition. Hence, we can regard DP (R) and DP#(R) as term rewriting systems,
respectively. However, TRS R, DP (R), DP#(R) and the union of them do not accurately
coincide on the termination property. In fact, for the TRS R1 = {f(a) → f(b), b → a},
it is trivial that R1 is not terminating while DP (R1) = {f(a) → f(b), f(a) → b} is
terminating. In this section, we investigate relations between TRSs, their dependency
pairs and the union of them. Moreover, we discuss the effectiveness of the marking
technique. As a result, we show a hierarchy of dependency pairs, which indicate a class
of TRSs in which the marking technique effectively works for proving termination.

Theorem 3.3.1 [45] The following inclusion relations hold:

(1) R is simply terminating if and only if R ∪DP (R) is simply terminating.

(2) If R ∪DP (R) is simply terminating then R ∪DP (R) is terminating.

(3) If R ∪DP (R) is terminating then R and DP (R) are terminating.

(4) R is terminating if and only if R ∪DP#(R) is terminating.

(5) If R ∪DP#(R) is terminating then DP#(R) is terminating.

(6) If DP (R) is terminating then DP#(R) is terminating.

Proof. The cases (2,3,5) are trivial, because all sub-TRSs of a terminating TRS are
terminating.

(1) (⇐) Trivial. (⇒) We define s > t by s
+

−−−→
R∪Emb

t. Since R is simply terminating, > is

a simplification order. It is easily checked that > is compatible with R ∪ DP (R).
Therefore, R ∪DP (R) is simply terminating.

(4) This case is Lemma 3.2.2.

(6) Assume that DP#(R) is not terminating and t0−−−→
DP#(R)

t1 −−−→
DP#(R)

t2−−−→
DP#(R)

· · ·. Let t′i

be the term obtained by erasing marking in ti. Then, it is clear that t′0−−−→
DP (R)

t′1

−−−→
DP (R)

t′2−−−→
DP (R)

· · ·. It is a contradiction to the termination of DP (R). �

Theorem 3.3.2 [45] There exist TRSs Ri such the following:

(1) DP (R1) is terminating but R1 is not terminating.

(2) DP#(R2) is terminating but R2 and DP (R2) are not terminating.

(3) R3 is terminating but DP (R3) is not terminating.

(4) R4 and DP (R4) are terminating but R4 ∪DP (R4) is not terminating.

(5) R5 ∪DP (R5) is terminating but R5 is not simply terminating.
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Proof. For each termination proof, we use the recursive path order > as a reduction order,
and we extend > to a weak reduction order &π by the argument filtering method.

(1) Consider the following TRSs R1 and R′
1:

R1 =

{

f(a) → f(b)
b → a

R′
1 =

{

f(a) → f(b)
f(a) → b

Here, R′
1 corresponds to DP (R1). Let a⊲ b. Then > is compatible with R′

1. Hence,
R′

1 is terminating. However, R1 is not terminating because of f(a)→
R1

f(b)→
R1

f(a).

(2) Consider the following TRSs R2, R
′
2 and R′′

2 :

R2 =







f(f(x)) → f(g(x))
g(x) → h(f(x))
h(x) → x

R′
2 =















f(f(x)) → f(g(x))
f(f(x)) → g(x)

g(x) → h(f(x))
g(x) → f(x)

R′′
2 =















f̌(f(x)) → f̌(g(x))

f̌(f(x)) → ǧ(x)

ǧ(x) → ȟ(f(x))

ǧ(x) → f̌(x)

Here, R′
2 and R′′

2 correspond to DP (R2) and DP#(R2), respectively. Let π(ȟ) = [],
f ⊲ g, f ⊲ ǧ ⊲ f̌ and ǧ ⊲ ȟ. Then &π is compatible with R′′

2 , and �π is compatible
with DP (R′′

2). Hence, R′′
2 is terminating. However, R2 and R′

2 are not terminat-
ing because of f(f(x))→

R2

f(g(x)) →
R2

f(h(f(x))) →
R2

f(f(x)) and f(f(x))→
R′

2

f(g(x))

→
R′

2

f(f(x)).

(3) Consider the following TRSs R3 and R′
3:

R3 =

{

f(f(x)) → f(g(x))
g(x) → h(f(x))

R′
3 =







f(f(x)) → f(g(x))
f(f(x)) → g(x)

g(x) → f(x)

Here, R′
3 corresponds toDP (R3). Let π(h) = [], f⊲g⊲h and f⊲g#⊲f#. Then &π is

compatible with R3, and �π is compatible with DP#(R3). Hence, R3 is terminating.
However, R′

3 is not terminating because of f(f(x))→
R′

3

f(g(x)) →
R′

3

f(f(x)).

(4) Consider the following TRSs R4, R
′
4 and R′′

4 :

R4 =







f(a) → f(b)
b → g(h(a))

h(x) → x

R′
4 =







f(a) → f(b)
f(a) → b

b → h(a)
R′′

4 =























f(a) → f(b)
b → g(h(a))

h(x) → x
f(a) → b

b → h(a)
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Here, R′
4 and R′′

4 correspond to DP (R4) and R4∪DP (R4), respectively. Let π(g) =
π(h#) = [], a⊲ b⊲ g and f# ⊲ b# ⊲ h#. Then &π is compatible with R4, and �π is
compatible with DP#(R4). Hence, R4 is terminating. Let π(h) = [] and a⊲ b⊲ h.
Then &π is compatible with R′

4, and �π is compatible with DP (R′
4). Hence, R′

4

is terminating. However, R′′
4 is not terminating because of f(a)→

R′′

4

f(b) →
R′′

4

f(h(a))

→
R′′

4

f(a).

(5) Consider the following TRSs R5 and R′
5:

R5 =
{

f(f(x)) → f(g(f(x))) R′
5 =

{

f(f(x)) → f(g(f(x)))
f(f(x)) → f(x)

Here, R′
5 corresponds to R5 ∪ DP (R5). Let π(g) = [] and f ⊲ g. Then &π is

compatible with R′
5, and �π is compatible with DP (R′

5). Hence, R
′
5 is terminating.

However, R5 is not simply terminating because of f(f(x))→
R5

f(g(f(x))) →
Emb

f(f(x)).

�

From Theorems 3.3.1 and 3.3.2, we can demonstrate the hierarchy as follows: (Figure
3.1)

R ∪ Emb, R ∪DP (R) ∪ Emb

R ∪DP (R)

DP (R)

R, R ∪DP#(R)

DP#(R)

R1

R2

R3

R4

R5

Figure 3.1: The Hierarchy of Dependency Pairs

This hierarchy makes clear the class of TRSs in which the marking technique works
effectively for proving termination. Since R and R ∪DP (R) make the difference class in
this hierarchy, we conclude that marking is effective for the class that R is terminating
but R∪DP (R) is not terminating. In fact, in Theorem 3.3.2, marking is only used in the
termination proof of R3 and R4, which belong to this class.
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3.4 Dependency Graph

For proving termination by Theorem 3.2.3, all dependency pairs must be checked. In order
to removing unnecessary dependency pairs, the notion of dependency graphs introduced
by Arts and Giesl is very useful [1, 2].

Definition 3.4.1 We define a directed graph as a set of nodes and a set of arcs, each arc
leading from a node to a node. A path is a sequence of nodes in which successive nodes
are connected by arcs in the graph. A cycle is a path of length at least 1 in which no
node is repeated except that the first and the last nodes are the same. We regard cycles
n1, . . . , nk and ni, . . . , nk−1, n1, . . . , ni as the same cycle. A non-empty set N of nodes
is a cluster if for all nodes n, n′ ∈ N there exist n1, n2, . . . , nm ∈ N (m ≥ 0) such that
n, n1, n2, . . . , nm, n

′ is a path in the graph.

Notice that the length of a path n, n1, n2, . . . , nm, n
′ in the above definition about

cluster is at least 1.

Definition 3.4.2 A dependency graph of R is a directed graph of which the nodes are
dependency pairs, and there is an arc from 〈u#, v#〉 to 〈u′#, v′#〉 if 〈u#, v#〉〈u′#, v′#〉 is a
dependency chain.

Theorem 3.4.3 [1, 2] Let R be a TRS. If there exists a weak reduction order & such
that

• l & r for all l → r ∈ R,
• u# & v# for all 〈u#, v#〉 on a cycle in the dependency graph of R, and
• u# � v# for at least one 〈u#, v#〉 on each cycle in the dependency graph of R,

then R is terminating.

Proof. Assume that R is not terminating. From Theorem 3.1.5, there exists an infinite
dependency chain 〈u#

0 , v
#

0 〉〈u
#

1 , v
#

1 〉〈u
#

2 , v
#

2 〉 · · · with θ such that v#

i θ
∗
→ u#

i+1θ for all i. Since
the number of dependency pairs is finite, there exists a tail of this infinite dependency
chain 〈u#

m, v
#
m〉〈u

#

m+1, v
#

m+1〉〈u
#

m+2, v
#

m+2〉 · · · in which all occurring dependency pairs occur
infinitely often up to variable renaming. Here, v#

i θ & u#

i+1θ for all i. Since any 〈u#

i , v
#

i 〉
(i ≥ m) is on a cycle, u#

i θ & v#

i θ. Since this tail is an infinite length path, infinite number
cycles occur. Hence cases like u#

i θ � v#

i θ occur infinitely often. It is a contradiction. �

The reader might think that this theorem can be generalized by dividing for treating
each cycle, that is, for each cycle C we allow to use different weak reduction order &C .
Unfortunately this generalization is not sound. For example, consider the following TRS:

R = {f(c, x, c) → f(a, b, x), f(a, b, x) → f(c, d, x), f(x, d, d) → f(a, b, x)}

Then, its dependency graph is Figure 3.2. In this graph, there are two cycles, that is, (1)
does not construct a cycle. For each cycle (2) and (3), it is easy to design a weak reduction
order by argument filtering method based on the recursive path order. However, R is not
terminating because f(a, b, c) → f(c, d, c) → f(a, b, d) → f(c, d, d) → f(a, b, c). To lead
this conjecture to be sound, we need the notion of clusters. In fact, the cluster (1) is
essential for existence of infinite dependency chains in the above examples. Note that
similar problem is also caused even if we change the definition of cycles such repeating no
arcs instead of nodes.
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〈f#(c, x, c), f#(a, b, x)〉 〈f#(a, b, x), f#(c, d, x)〉 〈f#(x, d, d), f#(a, b, x)〉

(1)

(2)

(3)

Figure 3.2: Dependency Graph

Theorem 3.4.4 [4] Let R be a TRS. If for each cluster N in the dependency graph there
exists a weak reduction order &N such that

• l &N r for all l → r ∈ R,
• u# &N v# for all 〈u#, v#〉 in N , and
• u# �N v# for at least one 〈u#, v#〉 in N ,

then R is terminating.

Proof. Assume that R is not terminating. From Theorem 3.1.5, there exists an infinite
dependency chain 〈u#

0 , v
#

0 〉〈u
#

1 , v
#

1 〉〈u
#

2 , v
#

2 〉 · · ·. Since the number of dependency pairs is
finite, there exist dependency pairs occuring infinitely often, up to variable renaming. Let
N = {〈u#

k1
, v#

k1
〉, . . . , 〈u#

kn
, v#

kn
〉} be the set of all dependency pairs that occur infinitely

often in this dependency chain. From the construction of N , N is a cluster. Moreover,
there exists a number m such that 〈u#

m, v
#
m〉〈u

#

m+1, v
#

m+1〉 · · · is constructed from depen-
dency pairs in N , and any dependency pair in N occurs infinitely often in the chain. From
the assumption, there exists a decreasing sequence v#

mθ &N u#

m+1θ &N v#

m+1θ &N u#

m+2θ
&N · · ·, in which cases like u#

i θ �N v#

i θ occur infinitely often. It leads to a contradiction.
�

Unfortunately, dependency graphs in general are not computable, because it is unde-
cidable whether there is some substitution θ such that v#θ

∗
→u′#θ for two dependency

pairs 〈u#, v#〉 and 〈u′#, v′#〉. To generate approximated dependency graphs, Arts and
Giesl introduced the following algorithm.

Definition 3.4.5 Let R be a TRS, t a term and z1, z2, . . . an infinite sequence of fresh
variables. The function CAP and REN from terms to terms are inductively defined as
follows:

CAP (x) = x

CAP (f(t1, . . . , tn)) =

{

z if f ∈ DF (R)
f(CAP (t1), . . . , CAP (tn)) if f 6∈ DF (R)

REN(x) = z
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REN(f(t1, . . . , tn)) = f(REN(t1), . . . , REN(tn))

where z represents the next fresh variable in the list of free variables.

Definition 3.4.6 Let R be a TRS. The approximated dependency graph of R is a directed
graph of which the nodes are dependency pairs, and there is an arc from 〈u#, v#〉 to
〈u′#, v′#〉 if REN(CAP (v#)) and u′# are unifiable.

Proposition 3.4.7 [1, 2] Let R be a TRS. The approximated dependency graph of R is
a subgraph of the dependency graph of R.

Arts and Giesl proposed a more powerful approximation algorithm using narrowing
technique [1, 3].
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Chapter 4

AC-Dependency Pairs

In this chapter, we extend the notion of dependency pairs to AC-TRSs. It is impossible
to directly apply the notion of dependency pairs to AC-TRSs. We show this difficulty
through an example. To avoid this difficulty we introduce the notion of head parts in
terms and show an analogy between the root positions in infinite reduction sequences
by TRSs and the head positions in those by AC-TRSs. Indeed, this analogy is essential
for the extension of dependency pairs to AC-TRSs. Based on this analogy, we define
AC-dependency pairs and AC-dependency chains.

The method of AC-dependency pairs compares rewrite rules and AC-dependency pairs
by a weak AC-reduction order or by a weak AC-reduction pair, which play an important
role on this method, instead of AC-reduction orders. We introduce the notion of weak
AC-reduction orders and weak AC-reduction pairs. We show their application for proving
AC-termination. Before introducing AC-dependency pairs, we have studied no designing
method for weak AC-reduction orders and weak AC-reduction pairs. Hence we introduce
the argument filtering method and the polynomial interpretation method. The original
idea of the argument filtering method for TRSs without AC-function symbols was first
proposed by Arts and Giesl [5, 23]. To analyze other proving methods for termination,
this method was slightly improved by combining the subterm relation [46]. We extend
these methods to AC-TRSs. Our extension designs a weak AC-reduction order and a
weak AC-reduction pair from an arbitrary AC-reduction order. Moreover, in order to
strengthen the power of the argument filtering method, we improve the method in two
directions. One is the lexicographic argument filtering method, which lexicographically
combines argument filtering functions to compare AC-dependency pairs. Another one is
an extension over multisets modulo AC.

Lastly, we introduce the notion of AC-dependency graphs. Since dependency graphs
in general are not computable, some algorithms for generating approximated dependency
graphs in TRSs were introduced [1, 2]. We also propose another algorithm for generating
an approximated AC-dependency graph, using the techniques of Ω-reduction and ΩV -
reduction, which are introduced to analyze decidable call-by-need computations in TRSs
[28, 55, 59]. Of course, our algorithm can also apply to TRSs, because TRSs are AC-TRSs
without AC-symbols.
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4.1 AC-Dependency Pair and AC-Dependency Chain

This section presents the notions of AC-dependency pairs and AC-dependency chains
for AC-TRSs. In order to simplify the discussion, we first treat AC-dependency pairs
without marked symbols, though the following discussion can be easily extended to AC-
dependency pairs with marked symbols.

4.1.1 Unmarked AC-Dependency Pairs and Chains

The notion of dependency pairs cannot be directly applied to AC-TRSs. Consider the AC-
TRS R = {f(x, x) → f(0, 1)} with ΣAC = {f}. Here, DP#(R) = {〈f#(x, x), f#(0, 1)〉}.
The AC-TRS R is not AC-terminating, because

f(f(0, 0), 1)→
R
f(f(0, 1), 1)∼

AC
f(0, f(1, 1))→

R
f(0, f(0, 1))∼

AC
f(f(0, 0), 1).

However, there is no infinite dependency chain, i.e., f#(0, 1)θ 6
∗
→

R/AC
f#(x, x)θ for all θ. Thus

the equivalency between the existence of infinite dependency chains and non-termination
(Theorem 3.1.5) does not hold for AC-TRSs. Theorem 3.1.5 is proved from the fact
that any infinite reduction sequence from a minimal size counterexample must include
a reduction at the root position. However, this property does not hold for AC-TRSs.
In fact, the infinite AC-reduction sequence in the above example does not include such
the reduction though f(f(0, 0), 1) is a minimal size counterexample in R. To avoid this
difficulty, we introduce the notion of head positions, which behaves like the root position
in a minimal size counterexample in TRSs.

Definition 4.1.1

Ohd(t) =

{

{p | ∀q � p, (t)q = (t)ε} if (t)ε ∈ ΣAC

{ε} if (t)ε 6∈ ΣAC

Tbd(t) =

{

{t|p | (t)p 6= (t)ε, ∀q ≺ p [(t)q = (t)ε]} if (t)ε ∈ ΣAC

{t|i | 1 ≤ i ≤ arity((t)ε)} if (t)ε 6∈ ΣAC

Definition 4.1.2

s
hd
→ t

def
⇐⇒ s ∼

AC
s′ →

R
p t for some s′ and p ∈ Ohd(s

′)

s
bd
→ t

def
⇐⇒ s ∼

AC
s′ →

R
p t for some s′ and p 6∈ Ohd(s

′)

sDhd t
def
⇐⇒ s ∼

AC
C[t]p for some C[ ]p and p ∈ Ohd(C[t]p)

For example, let t ≡ f(f(0, 1), g(f(2, 3))) and ΣAC = {f}. Then Ohd(t) = {ε, 1},
Tbd(t) = {0, 1, g(f(2, 3))} and f(f(0, 1), g(f(2, 3)))Dhd f(0, 1).

Definition 4.1.3 Let R be an AC-TRS. The set DPAC(R) of unmarked AC-dependency
pairs in R is defined by

DPAC(R) = DP (R) ∪ {〈f(l, z), f(r, z)〉 | l → r ∈ R, (l)ε = f ∈ ΣAC}

where z is a flesh variable. We call 〈f(l, z), f(r, z)〉 by unmarked extended dependency
pair.
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Example 4.1.4 Let ΣAC = {add} and

R =

{

add(x, 0) → x
add(x, s(y)) → s(add(x, y))

Here, DF (R) = {add}. There is one unmarked dependency pairs

〈add(x, s(y)), add(x, y)〉

and two unmarked extended dependency pairs

〈add(add(x, 0), z), add(x, z)〉, 〈add(add(x, s(y)), z), add(s(add(x, y)), z)〉.

Definition 4.1.5 A sequence of unmarked AC-dependency pairs 〈u0, v0〉〈u1, v1〉〈u2, v2〉 · · ·

is an unmarked AC-dependency chain if there exists a substitution θ such that viθ
bd
→ ∗Dhd

ui+1θ for all i. We assume that different unmarked AC-dependency pair occurrences do
not own jointly variables without loss of generality.

Lemma 4.1.6 Let s ≡ C[s1, . . . , sn]
bd
→ t such that each s′ ∈ Tbd(s) is a subterm of some

si. Then there are t1, . . . , tn such that C[t1, . . . , tn] ∼
AC

t, each t′ ∈ Tbd(C[t1, . . . , tn]) is a

subterm of some ti, and there is some k such that sk →
R/AC

tk and sj ≡ tj for all j 6= k.

Proof. It is obvious from the definitions of
bd
→ and ∼

AC
. �

Lemma 4.1.7 Let t be an arbitrary term such that any term in Tbd(t) is AC-terminating.

Then there is no infinite
bd
→ sequence starting from t.

Proof. Assume that there exists an infinite
bd
→ sequence t ≡ t0

bd
→ t1

bd
→· · ·. Suppose that

t0 ≡ C[t01, . . . , t0n] where all body terms of t0 are presented by t01, . . . , t0n. Applying
Lemma 4.1.6 repeatedly, for any i there are ti1, . . . , tin such that ti ∼

AC
C[ti1, . . . , tin], each

term of Tbd(ti) is a subterm of some tij , and there is a ki such that si−1,ki →
R/AC

tiki and

si−1,j ≡ tij for all j 6= ki. Thus, there is a t0j that is not AC-terminating. It is a
contradiction to AC-termination of t0j ∈ Tbd(t). �

This lemma means that “any infinite AC-reduction sequence from a minimal size coun-
terexample must include a reduction at the head position”. This property corresponds to
the property “any infinite reduction sequence from a minimal size counterexample must
include a reduction at the root position” in TRSs. Indeed, this analogy is essential in our
extension of dependency pairs to AC-TRSs.

Lemma 4.1.8 If each ti is AC-terminating and g(t1, . . . , tn) is not AC-terminating, then
g ∈ DF (R).

Proof. From Lemma 4.1.7, there exists a head reduction
hd
→ in any infinite AC-reduction

sequence starting from g(t1, . . . , tn). Therefore, g is a defined symbol. �
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Lemma 4.1.9 Let t be a term such that t is not AC-terminating and each element of

Tbd(t) is AC-terminating. Then there exist t′ and s such that t
bd
→ ∗Dhd t

′ hd
→
R
s, each proper

subterm of t′ is AC-terminating, and s is not AC-terminating.

Proof. Let Ti = {t′ | t
bd
→ i Dhd t

′ hd
→
R
s and s is not AC-terminating, for some s}, where

bd
→ i

denotes a
bd
→ reduction of i steps. Since t is not AC-terminating and each element of Tbd(t)

is AC-terminating, there is an n such that Tn 6= ∅ and Tj = ∅ for all j > n by Lemma
4.1.7. Let t′ be a minimal size element in Tn. We assume that t′ has a proper subterm t′′

which is not AC-terminating. Since each element of Tbd(t) is AC-terminating, so is each
element of Tbd(t

′). Thus, each element of Tbd(t
′′) is AC-terminating and t′ ⊲hd t

′′. From

Lemma 4.1.7, there is an infinite AC-reduction sequence such that t′′
bd
→ kDhd t̂

hd
→
R
ŝ →

R/AC
· · ·

for some t̂ and ŝ. Thus, t̂ ∈ Tn+k. From the maximality of n, Tn+k = Tn. Thus, t
′′ Dhd t̂.

From the definition of Dhd, we have |t′| > |t′′| ≥ |t̂|. It is a contradiction to the minimality
of t′. �

Theorem 4.1.10 [43] An AC-TRS R is not AC-terminating iff there is an infinite un-
marked AC-dependency chain of R.

Proof.

(⇐) Let 〈u0, v0〉〈u1, v1〉〈u2, v2〉 · · · be an infinite unmarked AC-dependency chain with

a substitution θ such that viθ
bd
→ ∗ Dhd ui+1θ for all i. Thus, there exist Ci and C ′

i

such that viθ
∗
→

R/AC
∼
AC

C ′
i+1[ui+1θ] →

R
Ci+1[vi+1θ] for all i. Therefore, there is an infinite

AC-reduction sequence v0θ
+
→

R/AC
C1[v1θ]

+
→

R/AC
C1[C2[v2θ]]

+
→

R/AC
· · ·.

(⇒) Let t0 be a minimal size counterexample, i.e., each proper subterm of t0 is AC-

terminating and t0 is not AC-terminating. From Lemma 4.1.9, we have t0
bd
→ ∗ Dhd

C[lθ]
hd
→
R
C[rθ] for some C, l → r and θ such that each proper subterm of C[lθ] is

AC-terminating and C[rθ] is not AC-terminating. We show that there exists a term

t1 and an unmarked AC-dependency pair 〈u0, v0〉 such that t0
bd
→ ∗Dhdu0θ0, v0θ0 ∼

AC
t1,

t1 is not AC-terminating and each proper subterm of t1 is AC-terminating. We have
two following cases:

(a) C ≡ �.
Let t1 be a minimal size counterexample in rθ. Since each proper subterm
of lθ is AC-terminating, xθ is AC-terminating for all x ∈ V ar(r) ⊆ V ar(l).
Thus, t1 ≡ v0θ for some non-variable subterm v0 of r. Therefore, there is an
unmarked dependency pair 〈u0, v0〉 and substitution θ0 such that u0θ0 ≡ lθ and
v0θ0 ≡ t1 from the minimality of t1 and Lemma 4.1.8.

(b) C 6≡ �.
Since each proper subterm of C[lθ] is AC-terminating, so is each proper subterm
of C[rθ]. From the definition of head parts, (l)ε = f ∈ ΣAC . Thus, there is an
unmarked extended dependency pair 〈u0, v0〉 such that u0 ≡ f(l, z), v0 ≡ f(r, z)
and f(l, z)θ0 ∼

AC
C[lθ] →

R
C[rθ] ∼

AC
f(r, z)θ0. We obtain t1 ≡ C[rθ].
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Repeating this procedure to t0, t1, t2, . . ., we get AC-dependency pairs 〈ui, vi〉 (i =

0, 1, 2, . . .) such that viθi ∼
AC

ti+1
bd
→ ∗ Dhd ui+1θi+1 for each i, which makes an infinite

unmarked AC-dependency chain 〈u0, v0〉〈u1, v1〉〈u2, v2〉 · · ·. �

4.1.2 AC-Dependency Pairs and Chains

On the dependency pair method in TRSs, the notion of marked symbols is very useful
for proving termination. In this subsection, we discuss the marking for AC-dependency
pairs. The root position of a term in TRSs is corresponding to the head positions of a
term in AC-TRSs in the behavior of a minimal size counterexample of infinite reduction
sequences. Thus, we define a term t# for AC-TRSs, which is the result of marking with
# all the head positions instead of the root position of t.

Definition 4.1.11






x# ≡ x
(f(t1, t2))

# ≡ f#(t#f

1 , t#f

2 ) if f ∈ ΣAC

(f(t1, . . . , tn))
# ≡ f#(t1, . . . , tn) if f 6∈ ΣAC







x#f ≡ x
(f(t1, . . . , tn))

#f ≡ f#(t#f

1 , . . . , t#f
n )

(g(t1, . . . , tm))
#f ≡ g(t1, . . . , tm) if f 6= g

We regard f# as an AC-function symbol for all f ∈ ΣAC , i.e., Σ
#
AC = ΣAC ∪ {f# | f ∈

ΣAC}.

For example, suppose that t ≡ f(f(0, 1), g(f(2, 3))) and ΣAC = {f}. Then Σ#
AC =

{f, f#} and t# ≡ f#(f#(0, 1), g(f(2, 3))).

Definition 4.1.12 Let R be an AC-TRS. A pair 〈u#, v#〉 is an AC-dependency pair of
R if 〈u, v〉 is an unmarked AC-dependency pair of R. We denote by DP#

AC(R) all AC-
dependency pairs of R.

Unlike the marking for TRSs, the marking for AC-TRSs is not compatible with
bd
→,

i.e., it does not hold that s
bd
→ t ⇒ s# → t#. For example, consider R = {g(x) →

f(x, x), h(x) → x} with ΣAC = {f}. Then we have the follows:

s ≡ f(g(0), h(f(1, 1)))
bd
→ f(f(0, 0), h(f(1, 1)))

bd
→ f(f(0, 0), f(1, 1)) ≡ t,

s# ≡ f#(g(0), h(f(1, 1)))
bd
→ f#(f(0, 0), h(f(1, 1)))

bd
→ f#(f(0, 0), f(1, 1)) 6≡ t#.

To avoid this problem we introduce the AC-TRS R# defined as follows:

R# = {f#(f(x, y), z) → f#(f#(x, y), z) | f ∈ ΣAC}.

We denote by t ↓# the normal form of t in →
R#/AC

. We write s
#
→ t if s →

R/AC
t′ ∧ t′ ↓#≡ t for

some t′. Note that
#
→ is compatible for the above example:

s# ≡ f#(g(0), h(f(1, 1)))
#
→ f#(f#(0, 0), h(f(1, 1)))

#
→ f#(f#(0, 0), f#(1, 1))
≡ t#.

Indeed we can show the compatibility of
#
→ for non-variable terms.
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Lemma 4.1.13 The following properties hold for any terms s, t ∈ T (Σ,V)\V.

(i) s
bd
→ t ⇐⇒ s# #

→ t#.

(ii) sDhd t ⇐⇒ s# Dhd t
#.

Proof. Trivial. �

Definition 4.1.14 A sequence of AC-dependency pairs 〈u#

0 , v
#

0 〉〈u
#

1 , v
#

1 〉〈u
#

2 , v
#

2 〉 · · · is an

AC-dependency chain if there is some substitution θ over T (Σ,V) such that (viθ)
# #
→ ∗Dhd

(ui+1θ)
# for all i. We assume that different AC-dependency pair occurrences do not own

jointly variables without loss of generality.

Theorem 4.1.15 [43] An AC-TRS R is not AC-terminating iff there exists an infinite
AC-dependency chain of R.

Proof. From Lemma 4.1.13, it follows that viθ
bd
→ ∗ Dhd ui+1θ iff (viθ)

# #
→ ∗ Dhd (ui+1θ)

#,
for any vi, ui+1 ∈ T (Σ,V)\V and θ over T (Σ,V). Thus, there is some infinite unmarked
AC-dependency chain iff there is some infinite AC-dependency chain. From Theorem
4.1.10, our proof is completed. �

4.1.3 Another AC-dependency Pair

Marché and Urbain recently proposed another idea of AC-dependency pairs in the frame-
work of flattening terms [52], which was done independently of our work. In this subsec-
tion, we introduce their AC-dependency pairs. In order to compare our AC-dependency
pairs and their ones in the same framework, the latter method is expressed with minor
modification. Firstly, we define the AC-extended AC-TRS RAC of R as follows:

RAC = R ∪ {f(l, z) → f(r, z) | l → r ∈ R, (l)ε = f ∈ ΣAC}

where z is a fresh variable.
Consider the AC-TRS R = {add(x, 0) → x, add(x, s(y)) → s(add(x, y))} with ΣAC =

{add}. Then

RAC = R ∪

{

add(add(x, 0), z) → add(x, z)
add(add(x, s(y)), z) → add(s(add(x, y)), z)

DP#(RAC) =















〈add#(x, s(y)), add#(x, y)〉
〈add#(add#(x, 0), z), add#(x, z)〉
〈add#(add#(x, s(y)), z), add#(s(add(x, y)), z)〉
〈add#(add#(x, s(y)), z), add#(x, y)〉

DP#

AC
(R) =







〈add#(x, s(y)), add#(x, y)〉
〈add#(add#(x, 0), z), add#(x, z)〉
〈add#(add#(x, s(y)), z), add#(s(add(x, y)), z)〉

The set of AC-dependency pairs introduced by us in [43] corresponds to DP#
AC
(R) and

another one introduced by Marché and Urbain in [52] corresponds to DP#(RAC).
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Proposition 4.1.16 [52] An AC-TRS R is not AC-terminating iff there exists 〈u#

0 , v
#

0 〉

〈u#

1 , v
#

1 〉〈u
#

2 , v
#

2 〉 · · · such that 〈u#

i , v
#

i 〉 ∈ DP#(RAC) and (viθ)
# #
→ ∗ ∼

AC
(ui+1θ)

# for all i.

We assume that different dependency pair occurrences do not own jointly variables without
loss of generality.

Note that our AC-dependency pairs do not require pairs 〈f(l, z), r|p〉 such that (l)ε =
f ∈ ΣAC and (r)p ∈ DF (R), which is essential in their framework. Hence, we have smaller
AC-dependency pairs in number for a given AC-TRS than they have. This fact is very
useful when the AC-dependency pair method is efficiently applied to automatic theorem
proving. On the other hand, their method is slightly powerful in theoretical than our one,
because their AC-dependency chains do not require the head subterm relation Dhd. In
next section, we will discuss the effects.

4.2 Proving AC-Termination by AC-Dependency

Pairs

On the AC-dependency pair method, weak AC-reduction orders and weak AC-reduction
pairs play an important role. In this section, using AC-dependency pairs, we introduce
new and powerful methods for effectively proving AC-termination.

4.2.1 Weak AC-Reduction Order

In this subsection, we introduce the notion of weak AC-reduction order.

Definition 4.2.1 A weak reduction order & is a weak AC-reduction order if & is AC-
compatible, i.e., s ∼

AC
t ⇒ s & t. A weak AC-reduction order & has the AC-deletion

property if f(f(x, y), z) & f(x, y) for all AC-symbols f .

Definition 4.2.2 A quasi-order & satisfies the AC-marked condition if & satisfies the
following two conditions:

(i) f#(f(x, y), z) & f#(f#(x, y), z) for all f ∈ ΣAC,
(ii) f#(f#(x, y), z) & f#(f(x, y), z) for all f ∈ ΣAC.

Theorem 4.2.3 [43] Let R be an AC-TRS. If there exists a weak AC-reduction order &

with the AC-deletion property and the AC-marked condition such that

(i) l & r for all l → r ∈ R,
(ii) u# � v# for all 〈u#, v#〉 ∈ DP#

AC(R),

then R is AC-terminating.

Proof. We assume that R is not AC-terminating. From Theorem 4.1.15, there is some
infinite AC-dependency chain 〈u#

0 , v
#

0 〉〈u
#

1 , v
#

1 〉〈u
#

2 , v
#

2 〉 · · · with a substitution θ such that

(viθ)
# #
→ ∗ Dhd (ui+1θ)

# for all i. It follows that
#
→ ∗ ⊆ & from the assumption (i), the

AC-compatibility, the transitivity, the stability, the monotonicity and the AC-marked
condition (i). It follows that Dhd ⊆ & from the AC-compatibility, the AC-deletion and
the stability. It follows that (uiθ)

# & u#

i θ from the stability, the monotonicity, and the
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AC-marked condition (ii). It follows that u#

i θ � v#

i θ from the assumption (ii) and the
stability of �. It follows that v#

i θ & (viθ)
# from the stability, the monotonicity and the

AC-marked condition (i). Therefore, we get an infinite decreasing sequence (u0θ)
# & u#

0 θ
� v#

0 θ & (v0θ)
# & (u1θ)

# & u#

1 θ � v#

1 θ & (v1θ)
# · · ·. It is a contradiction. �

For another AC-dependency pair DP (RAC) by Marché and Urbain, we obtain the
theorem corresponds to the above one.

Proposition 4.2.4 [52] Let R be an AC-TRS. If there exists a weak AC-reduction order
& with the AC-marked condition1 such that

(i) l & r for all l → r ∈ R,
(ii) u# � v# for all 〈u#, v#〉 ∈ DP#(RAC),

then R is AC-terminating.

Though our AC-dependency pairs DP#
AC
(R) is smaller than theirs DP#(RAC), their

method is slightly powerful than our one in theoretical. In fact, suppose that our method
prove AC-termination of an AC-TRS R by weak AC-reduction order & with the AC-
deletion property and Theorem 4.2.3, i.e., � is compatible with DP#

AC
(R). Then � is also

compatible with DP#(RAC). Therefore, their method also prove the AC-termination.
Conversely, our approach does not always work well whenever their method prove AC-
termination, because we additionally require the AC-deletion property. However, this
requirement is not strong in practice, because the AC-deletion property automatically
holds for any AC-reduction orders that we have known. So with AC-deletion property,
both methods are equally powerful.

4.2.2 Weak AC-Reduction Pair

In order to analyze the transformation methods for proving termination, we slightly ex-
tended the notion of weak reduction order to that of weak reduction pair [46]. In this
subsection, we extend the notion to AC-TRSs.

Definition 4.2.5 A weak reduction pair (&, >) is a weak AC-reduction pair if & is AC-
compatible (s ∼

AC
t ⇒ s & t). A weak AC-reduction pair (&, >) has the AC-deletion prop-

erty if for all f ∈ ΣAC, f(f(x, y), z) & f(x, y) or f(f(x, y), z) > f(x, y). A weak AC-
reduction pair (&, >) satisfies the AC-marked condition if for all f ∈ ΣAC, f

#(f(x, y), z) &
f#(f#(x, y), z) and f#(f#(x, y), z) & f#(f(x, y), z).

Note that (&,�) is a weak AC-reduction pair for all weak AC-reduction order &.

Theorem 4.2.6 For any AC-TRS R, the following properties are equivalent.

1. AC-TRS R is AC-terminating.

2. There exists a weak AC-reduction pair (&, >) with the AC-deletion property such
that & is compatible with R and > is compatible with DPAC(R).

1This AC-marked condition is slightly modified, because their original definition can not handle col-
lapsing rules, i.e., the rules whose right hand sides are variables.

35



3. There exists a weak AC-reduction pair (&, >) such that & is compatible with R and
> is compatible with DP (RAC).

4. There exists a weak AC-reduction pair (&, >) with the AC-marked condition and
the AC-deletion property such that & is compatible with R and > is compatible
with DP#

AC(R).

5. There exists a weak AC-reduction pair (&, >) with the AC-marked condition such
that & is compatible with R and > is compatible with DP#(RAC).

Proof. For the cases (1 ⇒ 2) and (1 ⇒ 3), we define & by ( →
R/AC

∪ ∼
AC
)∗, and s > t by s 6∼

AC

t

and s & C[t] for some C. Then it is easily shown that (&, >) is a weak AC-reduction
pair satisfying the conditions. For the cases (2 ⇒ 4) and (3 ⇒ 5), it is easily shown by
identifying f# with f . For the case (4 ⇒ 1), as similar to the proof of Theorem 4.2.3. For
the case (5 ⇒ 1), as similar to the proof of Proposition 4.2.4. �

For a given AC-terminating AC-TRS R, it is still open whether there exists a weak
AC-reduction order & such that & is compatible with R and its strict part � is compatible
with unmarked AC-dependency pairs DPAC(R). On the other hand, the above theorem
guarantees the existence of such weak AC-reduction pair. This fact indicates that weak
AC-reduction pairs have an extra power as compared with weak AC-reduction orders.

4.2.3 Argument Filtering Method

In this subsection, to design weak AC-reduction orders and weak AC-reduction pairs, we
extend the argument filtering method to AC-TRSs.

Definition 4.2.7 An argument filtering function π satisfies the AC-condition if for all
f ∈ Σ#

AC , π(f) is either [] or [1, 2].

The above restriction is essential in AC-TRSs, because it guarantees that the image
of associative and commutative axiom for f ∈ ΣAC are either f = f or themselves. For
example, for a commutative axiom f(x, y) =C f(y, x) of f ∈ ΣAC, π(f(x, y) =C f(y, x))
produces the following equations:

f(x, y) =C f(y, x)
π

=⇒















f =C f if π(f) = []
x =C y if π(f) = 1
f(x) =C f(y) if π(f) = [1]
f(x, y) =C f(y, x) if π(f) = [1, 2]

Based on this observation we define AC-function symbols after argument filtering by
Σ#

AC,π
= {f ∈ Σ#

AC
| π(f) = [1, 2]} . We also write by ∼

AC
the AC-equation generated by

Σ#
AC,π

. Then it follows that s ∼
AC

t implies π(s) ∼
AC

π(t).

Definition 4.2.8 We define the AC-extension &AC of a strict order > by &AC= (>
∪ ∼

AC
)∗. We define s &sub

AC
t by s &AC C[t] for some C, and �sub

AC
by its strict part.

Note that if > be an AC-reduction order then the strict part �AC of its AC-extension
&AC is also AC-reduction order.
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Lemma 4.2.9 If a strict order > is AC-compatible then &AC= >= ◦ ∼
AC
.

Proof. It is trivial. �

Lemma 4.2.10 Let > be an AC-reduction order. Then �sub
AC

is well-founded.

Proof. We assume that there exists an infinite decreasing sequence t0 �sub
AC

t1 �sub
AC

t2 �sub
AC

· · ·. Then there exist Ci (i = 1, 2, . . .) such that ti &AC Ci+1[ti+1]. Here, &AC has
the monotonicity, because > and ∼

AC
have the monotonicity. Thus, t0 &AC C1[t1] &AC

C1[C2[t2]] · · ·. From the well-foundedness of > and Lemma 4.2.9, there is some k such that
C1[· · ·Ck[tk] · · ·] ∼

AC
C1[· · ·Ck+1[tk+1] · · ·] ∼

AC
C1[· · ·Ck+2[tk+2] · · ·] ∼

AC
· · ·. Since ∼

AC
preserves

the size of terms, there is some m such that Cm ≡ �. Hence, it follows that tm−1 ∼
AC

tm.

It is a contradiction to tm−1 �sub
AC

tm. �

Definition 4.2.11 Let > be a strict order and π an argument filtering function. We
define s &π t by π(s) &AC π(t), and s >π t by π(s) �sub

AC
π(t).

Lemma 4.2.12 Let > be an AC-reduction order. Then the following properties hold:

• s &π t ⇐⇒ π(s) >= ◦ ∼
AC

π(t),

• s �π t ⇐⇒ π(s) > ◦ ∼
AC

π(t),

• s &π t ∧ t &π s ⇐⇒ π(s) ∼
AC

π(t),

• s >π t ⇐⇒ ∃C. π(s) > ◦ ∼
AC

C[π(t)] or ∃C 6≡ �. π(s) ∼
AC

C[π(t)].

Proof. It suffices to show implications from left to right. The first property is a direct
consequence of Lemma 4.2.9, and the second property is a direct consequence of the first
property.

Let s &π t∧ t &π s. From Lemma 4.2.9, π(s) >= ◦ ∼
AC

π(t) >= ◦ ∼
AC

π(s). If π(s) 6∼
AC

π(t)

then π(s) > ◦ ∼
AC

π(s). It is a contradiction to the well-foundedness of >. Hence the third

property holds.
Let s >π t. Then π(s) &AC C[π(t)]. From Lemma 4.2.9, π(s) >= ◦ ∼

AC
C[π(t)]. Hence,

π(s) ∼
AC

C[π(t)] or π(s) > ◦ ∼
AC

C[π(t)]. In the former case, if C ≡ � then π(s) ∼
AC

π(t). It is

a contradiction to π(s) �sub
AC π(t). Hence C 6≡ �. Therefore the fourth property holds. �

Theorem 4.2.13 If > is an AC-reduction order and π is an argument filtering function
with the AC-condition then &π is a weak AC-reduction order2. Furthermore, if > has the
AC-deletion property then so is &π.

Proof.

2For designing a weak AC-reduction order, the argument filtering method is essentially a special form
of recursive program schema (RPS). Indeed, Marché and Urbain proved a similar result in a general
framework of AC-RPS [52].
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• (&π is an AC-compatible quasi-order): It is a direct consequence of the first property
of Lemma 4.2.12.

• (The monotonicity of &π): From Lemma 3.2.11, s &π t ⇒ π(s) &AC π(t) ⇒
π(C)[π(s)] &AC π(C)[π(t)] ⇒ π(C[s]) &AC π(C[t]) ⇒ C[s] &π C[t].

• (The stability of &π): From Lemma 3.2.10, s &π t ⇒ π(s) &AC π(t) ⇒ π(θ)(π(s))
&AC π(θ)(π(t)) ⇒ π(sθ) &AC π(tθ) ⇒ sθ &π tθ.

• (The well-foundedness of �π): We assume that there exists an infinite decreasing
sequence t0 �π t1 �π t2 �π · · ·. Then π(t0) > ◦ ∼

AC
π(t1) > ◦ ∼

AC
π(t2) > ◦ ∼

AC
· · ·. It is

a contradiction.

• (The stability of �π): From Lemma 3.2.10, s �π t ⇒ π(s) > ◦ ∼
AC

π(t) ⇒ π(θ)(π(s))

> ◦ ∼
AC

π(θ)(π(t)) ⇒ π(sθ) > ◦ ∼
AC

π(tθ) ⇒ sθ �π tθ.

• (The AC-deletion property): Let f ∈ ΣAC. If π(f) = [] then π(f(f(x, y), z)) ≡
f ≡ π(f(x, y)). Hence, it follows that f(f(x, y), z) &π f(x, y). If π(f) = [1, 2]
then π(f(f(x, y), z)) ≡ f(f(x, y), z) > f(x, y) ≡ π(f(x, y)). Hence, it follows that
f(f(x, y), z) &π f(x, y). �

Theorem 4.2.14 If > is an AC-reduction order and π is an argument filtering function
with the AC-condition then (&π, >π) is a weak AC-reduction pair with the AC-deletion
property.

Proof. In the proof of Theorem 4.2.13, we have already shown the AC-compatibility, the
stability and the monotonicity of &π.

• (The stability of >π): Thanks to Lemmas 4.2.12 and 3.2.10, if π(s) ∼
AC

C[π(t)] then

π(sθ) ∼
AC

C ′[π(tθ)] is trivial, where C ′ ≡ π(θ)(C). Suppose that π(s) > ◦ ∼
AC

C[π(t)].

s >π t ⇒ π(s) > ◦ ∼
AC

C[π(t)]

⇒ π(θ)(π(s)) > ◦ ∼
AC

π(θ)(C[π(t)])

⇒ π(θ)(π(s)) > ◦ ∼
AC

C ′[π(θ)(π(t))] where C ′ ≡ π(θ)(C)

⇒ π(sθ) > ◦ ∼
AC

C ′[π(tθ)]

⇒ sθ >π tθ

• (The well-foundedness of >π): Assuming that the existence of an infinite decreasing
sequence t0 >π t1 >π t2 >π · · ·, it follows that π(t0) �sub

AC
π(t1) �sub

AC
π(t2) �sub

AC
· · ·.

It is a contradiction to Lemma 4.2.10.

• (&π ◦ >π⊆>π): Let t0 &π t1 >π t2. From Lemma 4.2.12, either π(t0) >= ◦ ∼
AC

π(t1) > ◦ ∼
AC

C[π(t2)] or π(t0) >= ◦ ∼
AC

π(t1) ∼
AC

C[π(t2)] ∧ C 6≡ � holds. In the

former case, π(t0) > ◦ ∼
AC

C[π(t2)] from the AC-compatibility and the transitivity of

>. Thus, it follows that t0 >π t2 by Lemma 4.2.12. In the latter case, π(t0) >=

◦ ∼
AC

C[π(t2)] and C 6≡ �. Thus, it follows that t0 >π t2 by Lemma 4.2.12.

38



• (The AC-deletion property): Suppose that f ∈ Σ#
AC. If π(f) = [] then π(f(f(x, y), z))

≡ f ≡ π(f(x, y)). Hence, it follows that f(f(x, y), z) &π f(x, y). If π(f) = [1, 2]
then π(f(f(x, y), z)) ≡ f(f(x, y), z) ≡ C[π(f(x, y))] for C ≡ f(�, z). Hence, it
follows that f(f(x, y), z) >π f(x, y). �

Note that a weak AC-reduction pair (&π, >π) automatically has the AC-deletion prop-
erty. Based on �π⊆>π, we get the following theorem.

Theorem 4.2.15 Let R be an AC-TRS. If there exists an AC-reduction order > and
argument filtering function π with the AC-condition such that

• f# is identified to f or π(f#) = [] for any AC-symbol f ,
• l & r for all l → r ∈ R, and
• u# �π v# for all 〈u#, v#〉 ∈ DP#

AC(R),

then R is AC-terminating.

Proof. From Theorem 4.2.14, (&π, >π) is a weak AC-reduction pair with AC-deletion
property. Since f# is identified to f or π(f#) = [] for any AC-symbols f , (&π, >π)
trivially satisfies the AC-marked condition. Since it is trivial that �π⊆>π, u

# >π v# for
all 〈u#, v#〉 ∈ DP#

AC(R). Therefore R is AC-terminating by Theorem 4.2.6. �

In order to show the usefulness of the argument filtering method, we prove the AC-
termination of AC-TRSs to which traditional techniques cannot be applied.

Example 4.2.16 As an AC-reduction order >, we use the order >flat
rpo

(see Proposition
2.4.14). Each AC-termination of R2, R3, R4 is proved by Theorem 4.2.15.

• Consider the following AC-TRS R1 with Σ#
AC = {g}.

R1 =
{

f(f(x)) → f(g(f(x), f(x)))

DP#
AC
(R1) =

{

〈f#(f(x)), f#(x)〉
〈f#(f(x)), f#(g(f(x), f(x)))〉

Let π(g) = [] and f ⊲ g. Then l &π r for all l → r ∈ R1, and u# >π v# for all
〈u#, v#〉 ∈ DP#

AC
(R1). Therefore R1 is AC-terminating.

• Consider the following AC-TRS R2 with Σ#
AC

= {h}.

R2 =

{

f(f(x)) → f(g(x))
g(x) → h(f(x), f(x))

DP#
AC(R2) =







〈f#(f(x)), f#(g(x))〉
〈f#(f(x)), g#(x)〉
〈g#(x), f#(x)〉

Let π(h) = [], f ⊲ g ⊲ h and f ⊲ g# ⊲ f#. Then l &π r for all l → r ∈ R2, and
u# >π v# for all 〈u#, v#〉 ∈ DP#

AC(R2). Therefore R2 is AC-terminating.

• Consider the following AC-TRS R3 with Σ#
AC = {g, h, h#}.

R3 =







f(a) → f(b)
b → g(h(a, a), a)

h(x, x) → x
DP#

AC(R3) =















〈f#(a), f#(b)〉
〈f#(a), b#〉
〈b#, h#(a, a)〉
〈h#(h#(x, x), z), h#(x, z)〉

Let π(g) = [], b# ⊲ a⊲ b⊲ g and f# ⊲ b# ⊲ h#. Then l &π r for all l → r ∈ R3, and
u# >π v# for all 〈u#, v#〉 ∈ DP#

AC(R3). Therefore R3 is AC-terminating.
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• Consider the following AC-TRS R4 with Σ#
AC = {f, f#, h}.

R4 =

{

f(a, x) → f(b, x)
b → h(a, a)

DP#
AC
(R4) =







〈f#(a, x), f#(b, x)〉
〈f#(a, x), b#〉
〈f#(f#(a, x), z), f#(f#(b, x), z)〉

Let π(h) = [], a⊲ b⊲ h and a⊲ b#. Then l &π r for all l → r ∈ R4, and u# >π v#

for all 〈u#, v#〉 ∈ DP#
AC(R4). Therefore R4 is AC-terminating.

4.2.4 Lexicographic Argument Filtering Method

By combining several argument filtering functions, we can strengthen the power of the
argument filtering method. In this subsection, we propose the lexicographic argument
filtering method, which lexicographically combines argument filtering functions to com-
pare AC-dependency pairs. The method presented here offers useful means to prove
AC-termination of complicated AC-TRSs on which a single argument filtering function
does not work.

In this subsection, we suppose that f# is identified to f or π(f#) = [] for any AC-
symbol f . This restriction guarantees the AC-marked condition of &π and π((tθ)#) ≡
π(t#θ) if t is not a variable. The same restriction was supposed in Theorem 4.2.15, because
Theorem 4.2.6 requests the AC-marked condition.

Theorem 4.2.17 Let R be an AC-TRS, > an AC-reduction order and π an argument fil-
tering function with the AC-condition. Suppose that &π is compatible with R and &π ∪ >π

is compatible with DP#
AC(R). Then, R is not AC-terminating if and only if there exists

an infinite AC-dependency chain 〈u#

0 , v
#

0 〉〈u
#

0 , v
#

0 〉〈u
#

0 , v
#

0 〉 · · · with substitution θ such that
{π(u#

0 ), π(v
#

0 ), π(u
#

1 ), π(v
#

1 ), . . .} is AC-unifiable by π(θ).

Proof. (⇐) It is trivial from Theorem 4.1.15. (⇒) From Theorem 4.1.15, there exist

〈u#

i , v
#

i 〉 ∈ DP#
AC(R) (i = 0, 1, 2, . . .) and a substitution θ such that (viθ)

# #
→ ∗Dhd (ui+1θ)

#

for all i. From the assumption and the AC-marked condition, (uiθ)
# &π (viθ)

# or
(uiθ)

# >π (viθ)
# for all i. From the assumption, the transitivity, the AC-deletion prop-

erty and the stability, (viθ)
# &π (ui+1θ)

# or (viθ)
# >π (ui+1θ)

# for all i. From the
well-foundedness and Lemma 4.2.12, there is some number k such that all π((uiθ)

#) and
π((viθ)

#) are AC-equivalent for all i ≥ k. The assumption f = f# or π(f#) = [] for any
AC-symbol f yields AC-equivalence among π(u#

i θ) and π(v#

i θ) for all i ≥ k. From Lemma
3.2.10, all π(u#

i )π(θ) and π(v#

i )π(θ) (i ≥ k) are AC-equivalent. Therefore, {π(u#

k ), π(v
#

k ),
π(u#

k+1), π(v
#

k+1), . . .} is AC-unifiable by π(θ). �

The following theorem gives a sufficient condition under which the lexicographic ar-
gument filtering method works well. In order to simplify the discussion, we treat only
two argument filtering functions, though the following discussion can be easily extended
to finitely many argument filtering functions.
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Theorem 4.2.18 Let R be an AC-TRS. If there exist AC-reduction orders >1 and >2

and argument filtering functions π1 and π2 with the AC-condition such that

• l >1

∼π1
r and l >2

∼π2
r for all l → r ∈ R,

• u# >1

∼π1
v# or u# >1

π1
v# for all 〈u#, v#〉 ∈ DP#

AC
(R), and

• u# >2
π2

v# for all 〈u#, v#〉 ∈ DP#
AC
(R) such that

π1(u
#) and π1(v

#) are AC-unifiable,

then R is AC-terminating.

Proof. We assume that R is not AC-terminating. From Theorem 4.2.17, there exist

〈u#

i , v
#

i 〉 ∈ DP#
AC
(R) (i = 0, 1, 2, . . .) and a substitution θ, such that ∀i. (viθ)#

#
→ ∗ Dhd

(ui+1θ)
# and {π1(u

#

0 ), π1(v
#

0 ), π1(u
#

1 ), π1(v
#

1 ), . . .} is AC-unifiable. From l >2

∼π2
r for all

l → r ∈ R and the AC-deletion property of ( >2

∼π2
, >2

π2
), it follows that (viθ)

# >2

∼π2
(ui+1θ)

#

or (viθ)
# >2

π2
(ui+1θ)

# for any i. From u# >2
π2

v# for all 〈u#, v#〉 ∈ DP#
AC
(R) such that

π1(u
#) and π1(v

#) are AC-unifiable, it follows that (uiθ)
# >2

π2
(viθ)

# for any i. It is a
contradiction to the well-foundedness of >2

π2
. �

In order to show the usefulness of the lexicographic argument filtering method, we
prove the AC-termination of an AC-TRS to which not only traditional techniques but
also single argument filtering function cannot be applied.

Example 4.2.19 As an AC-reduction order >, we use the order >flat
rpo (see Proposition

2.4.14). Consider the following AC-TRS R5 with Σ#
AC

= {g, g#}.

R5 =







f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))

g(0, x) → g(f(x, x), x)

DP#
AC
(R5) =















〈f#(s(x), s(y)), f#(x, y)〉
〈g#(0, x), g#(f(x, x), x)〉
〈g#(0, x), f#(x, x)〉
〈g#(g#(0, x), z), g#(g#(f(x, x), x), z)〉

Let π1(s) = π1(f) = π1(f
#) = [] and 0⊲1 f = f# ⊲1 s. Then, l >1

∼π1
r for all l → r ∈ R5,

and u# >1

∼π1
v# or u# >1

π1
v# for all 〈u#, v#〉 ∈ DP#

AC
(R5). Let π2(g

#) = π2(g) = [] and

f ⊲2 s. Then l >2

∼π2
r for all l → r ∈ R5 and f#(s(x), s(y)) >2

π2
f#(x, y), which is an only

AC-unifiable AC-dependency pair after argument filtering by π1. From Theorem 4.2.18,
R5 is AC-terminating.

It should be mentioned that the lexicographic argument filtering method proposed
here can be similarly applied to proving not only AC-termination but also termination of
TRSs. Note that traditional proof techniques by simplification orders cannot be directly
applied to TRS R5.
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Corollary 4.2.20 Let R be an AC-TRS. If for any i = 1, 2, . . . , n there exist AC-
reduction orders >i and argument filtering functions πi with the AC-condition such that

• l >i

∼πi
r for all i and l → r ∈ R,

• u# >i

∼πi
v# ∨ u# >i

πi
v# for all 〈u#, v#〉 ∈ DP#

AC(R) such that
πj(u

#) and πj(v
#) are AC-unifiable for any j < i, and

• u# >n
πn

v# for all 〈u#, v#〉 ∈ DP#
AC(R) such that

πj(u
#) and πj(v

#) are AC-unifiable for all j < n,

then R is AC-terminating.

4.2.5 AC-Multisets Extension

An argument filtering function π cannot preserve the AC-equivalent without the AC-
condition, i.e., it does not hold that s ∼

AC
t ⇒ π(s) ∼

AC
π(t). Hence, we can not treat

an argument filtering function π if π(f) = 1 or π(f) = 2 for some f ∈ ΣAC, because
π(f(x, y)) = π(f(y, x)) makes x = y or y = x for the axiom of commutative law f(x, y) =C

f(y, x). This problem can be avoided by defining π̂(f(x, y)) = {x, y}. In this subsection,
in order to treat such π, we introduce the extension π̂ of argument filtering function π
over multisets modulo AC by permitting π(f) = 0 as an exception for any f ∈ Σ#.

For any AC-reduction order, the equivalence parts of both &AC and &sub
AC

are trivially
equal to ∼

AC
. Hence it is enough to treat only ∼

AC
as equation in this subsection. To simplify

the discussions, we call multiset extension for quasi-orders, whose equivalence part are
equal to ∼

AC
, by AC-multiset extension, and we omit the subscript AC in the relations (∈AC,

=AC, ⊆AC and ⊂AC) and in the operations (∪AC, ∩AC and −AC) over multisets.

Definition 4.2.21 We define the argument filtering function π̂ from terms to multisets
as follows:















π̂(x) = {x}
π̂(f(~ti)) = π̂(tj) if π(f) = j ( 6= 0)

π̂(f(~ti)) = ∪iπ̂(ti) if π(f) = 0

π̂(f(~ti)) = {f( ~t′ij) | t
′
ij
∈ π̂(tij) (j = 1, . . . , m)} if π(f) = [i1, . . . , im]

We also define the substitution π̂(θ) from terms to multisets as follows:

π̂(θ)(x) = π̂(θ(x))

π̂(θ)(f(~ti)) = {f(~t′i) | t
′
i ∈ π̂(θ)(ti)}

We extend π̂(θ) over multisets as follows:

π̂(θ)(T ) = {t | t′ ∈ T, t ∈ π̂(θ)(t′)}

For example, let π(f) = 0 and θ(x) = f(a, b). Then it follows that π̂(f(a, b)) = {a, b}
and π̂(θ)(g(x, x)) = π̂(g(f(a, b), f(a, b))) = {g(a, a), g(a, b), g(b, a), g(b, b)}.

Definition 4.2.22 Let > be an AC-reduction order. We define ≫ AC by the AC-multiset
extension of &AC, ≫ sub

AC
by the AC-multiset extension of &sub

AC
, and ≫sub

AC
by the strict part

of ≫ sub
AC.
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Definition 4.2.23 We define s &mul
π t by π̂(s) ≫ ACπ̂(t), and s >mul

π t by π̂(s) ≫sub
AC π̂(t).

Lemma 4.2.24 s ∼
AC

t ⇒ π̂(s) = π̂(t)

Proof. We prove the claim by induction on s. The case s ≡ x ∈ V is trivial, because
t ≡ x ≡ s by s ∼

AC
t. Suppose that s ≡ f(s1, . . . , sn). Because of s ∼

AC
t, the root symbol

of t is f . Thus we denote t ≡ f(t1, . . . , tn). If si ∼
AC

ti for all i then π̂(si) = π̂(ti) for all i

by induction hypothesis. Hence it follows that π̂(s) = π̂(t). On the other hand, since the
equivalence relation = over multisets modulo ∼

AC
is an equivalence relation, it suffices to

show the cases f ∈ ΣAC and either s ≡ f(s1, s2) ∧ t ≡ f(s2, s1) or s ≡ f(f(s11, s12), s2)
∧t ≡ f(s11, f(s12, s2)). We have the following three cases.

• π(f) = 0:
π̂(f(s1, s2)) = π̂(s1) ∪ π̂(s2) = π̂(f(s2, s1))

π̂(f(f(s11, s12), s2)) = π̂(f(s11, s12)) ∪ π̂(s2)

= π̂(s11) ∪ π̂(s12) ∪ π̂(s2)

= π̂(s11) ∪ π̂(f(s12, s2))

= π̂(f(s11, f(s12, s2)))

• π(f) = []:
π̂(f(s1, s2)) = {f} = π̂(f(s2, s1))

π̂(f(f(s11, s12), s2)) = {f} = π̂(f(s11, f(s12, s2)))

• π(f) = [1, 2]:

π̂(f(s1, s2)) = {f(ŝ1, ŝ2) | ŝi ∈ π̂(si)} = {f(ŝ2, ŝ1) | ŝi ∈ π̂(si)} = π̂(f(s2, s1))

π̂(f(f(s11, s12), s2)) = {f(ŝ3, ŝ2) | ŝ3 ∈ π̂(f(s11, s12)), ŝ2 ∈ π̂(s2)}

= {f(f(ŝ11, ŝ12), ŝ2) | ŝ11 ∈ π̂(s11), ŝ12 ∈ π̂(s12), ŝ2 ∈ π̂(s2)}

= {f(ŝ11, f(ŝ12, ŝ2)) | ŝ11 ∈ π̂(s11), ŝ12 ∈ π̂(s12), ŝ2 ∈ π̂(s2)}

= {f(ŝ11, ŝ4) | ŝ11 ∈ π̂(s11), ŝ4 ∈ π̂(f(s12, s2))}

= π̂(f(s11, f(s12, s2)))
�

Lemma 4.2.25 π̂(θ)(π̂(t)) = π̂(tθ)

Proof. We prove the claim by induction on t. In the case t ≡ x ∈ V, π̂(θ)(π̂(x))
= π̂(θ)({x}) = π̂(xθ). Suppose that t ≡ f(t1, . . . , tn). We have the following three cases.

• π(f) = j ( 6= 0):

π̂(θ)(π̂(f(t1, . . . , tn))) = π̂(θ)(π̂(tj))

= π̂(tjθ)

= π̂(f(t1θ, . . . , tjθ, . . . , tnθ))

= π̂(f(t1, . . . , tj, . . . , tn)θ)
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• π(f) = 0:

π̂(θ)(π̂(f(t1, . . . , tn))) = π̂(θ)(π̂(t1) ∪ · · · ∪ π̂(tn))

= π̂(θ)(π̂(t1)) ∪ · · · ∪ π̂(θ)(π̂(tn))

= π̂(t1θ) ∪ · · · ∪ π̂(tnθ)

= π̂(f(t1θ, . . . , tnθ))

= π̂(f(t1, . . . , tn)θ)

• π(f) = [i1, . . . , im]:

π̂(θ)(π̂(f(~ti))) = π̂(θ)({f( ~t′ij) | t
′
ij
∈ π̂(tij )})

= {t′′ | t′ ∈ {f( ~t′ij ) | t
′
ij
∈ π̂(tij )}, t

′′ ∈ π̂(θ)(t′)}

= {t′′ | t′ij ∈ π̂(tij ), t
′′ ∈ {f( ~t′′ij) | t

′′
ij
∈ π̂(θ)(t′ij)}}

= {f( ~t′′ij) | t
′
ij
∈ π̂(tij), t

′′
ij
∈ π̂(θ)(t′ij )}

= {f( ~t′′ij) | t
′′
ij
∈ {t′′′ij | t

′
ij
∈ π̂(tij ), t

′′′
ij
∈ π̂(θ)(t′ij )}}

= {f( ~t′′ij) | t
′′
ij
∈ π̂(θ)(π̂(tij ))}

= {f( ~t′′ij) | t
′′
ij
∈ π̂(tijθ)}

= π̂(f(t1θ, . . . , tnθ))

= π̂(f(t1, . . . , tn)θ)
�

Theorem 4.2.26 If > is an AC-reduction order and π is an argument filtering function
with the AC-condition then (&mul

π , >mul
π ) satisfies the conditions of the weak AC-reduction

pair except for the stability.

Proof.

• (The AC-compatibility of &mul
π ):

Let s ∼
AC

t. From Lemma 4.2.24, π̂(s) = π̂(t). Hence it follows that s &mul
π t.

• (The monotonicity of &mul
π ):

Let s &mul
π t. We prove the claim by induction on C. It suffices to show the case C ≡

f(. . . , ti−1,�, ti+1, . . .). In the case π(f) = j ( 6= 0), if j 6= i then π̂(C[s])≫ ACπ̂(C[t])
is trivial, otherwise π̂(C[s]) = π̂(s) ≫ ACπ̂(t) = π̂(C[t]). In the case π(f) = 0,
π̂(C[s]) =

⋃

i 6=j π̂(ti) ∪ π̂(s) ≫ AC

⋃

i 6=j π̂(ti) ∪ π̂(t) = π̂(C[t]). In the case π(f) =
[i1, . . . , im], if i 6∈ π(f) then it is trivial. Suppose that i ∈ [i1, . . . , im] = π(f).
For any f(t̂i1 , . . . , t̂, . . . , t̂im) ∈ π̂(C[t]) − π̂(C[s]), it follows that t̂ ∈ π̂(t) − π̂(s).
Thus, there is some ŝ ∈ π̂(s) − π̂(t) such that ŝ �AC t̂. From the monotonicity
of �AC , f(t̂i1, . . . , ŝ, . . . , t̂im) &AC f(t̂i1 , . . . , t̂, . . . , t̂im). Moreover, it follows that
f(t̂i1 , . . . , ŝ, . . . , t̂im) ∈ π̂(C[s])− π̂(C[t]). Therefore, π̂(C[s]) ≫ ACπ̂(C[t]).

• (The well-foundedness of >mul
π ):

From Lemma 4.2.10, �sub
AC is well-founded. Hence, ≫sub

AC is well-founded by Proposi-
tion 2.1.20. Therefore, >mul

π is well-founded.
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• (&mul
π ◦ >mul

π ⊆>mul
π ):

Let π̂(t0) ≫ ACπ̂(t1) ≫sub
AC

π̂(t2). In the case π̂(t0) = π̂(t1) it is trivial that π̂(t0) ≫sub
AC

π̂(t2). Suppose that π̂(t0) 6= π̂(t1). From �AC⊆�sub
AC
, it follows that π̂(t0) ≫sub

AC
π̂(t1).

Since ≫sub
AC is transitive by Proposition 2.1.20, it follows that π̂(t0) ≫sub

AC π̂(t2). �

Unfortunately, both &mul
π and >mul

π are not stable. For example, let s ≡ h(x), t ≡
g(x, x), π(f) = 0 and θ = {x := f(y, z)}. Using the order >flat

rpo with precedence h⊲ g as
an AC-reduction order, we trivially obtain s >mul

π t. However, since π̂(sθ) = {h(y), h(z)}
and π̂(tθ) = {g(y, y), g(y, z), g(z, y), g(z, z)}, it follows that sθ 6>mul

π tθ. Hence, we need a
suitable restriction to assure the stability of &mul

π and >mul
π .

On the other hand, in general, for any t, t̂ ∈ π̂(t) and θ, we have

π̂(θ)(t̂) ⊇ {t̂θ1, . . . , t̂θn}

for θ1, . . . , θn such that ∀x ∈ V ar(t).xθi ∈ π̂(xθ) and ∀x 6∈ V ar(t).xθi ≡ x. Moreover, if t
is linear then the equivalence holds, i.e.,

π̂(θ)(t̂) = {t̂θ1, . . . , t̂θn}.

In the previous example, letting ŝ ≡ h(x) ∈ π̂(s) and t̂ ≡ g(x, x) ∈ π̂(t), it follows that

π̂(θ)(ŝ) = {ŝθ1, ŝθ2} and π̂(θ)(t̂) ⊇ {t̂θ1, t̂θ2}

where θ1 = {x := y} and θ2 = {x := z}. Using this fact we prove the following lemma.

Lemma 4.2.27 Let s and t be terms. If any t̂ ∈ π̂(t) − π̂(s) is linear then s &mul
π t ⇒

sθ &mul
π tθ and s >mul

π t ⇒ sθ >mul
π tθ.

Proof. (&mul
π ): It suffices to show that π̂(θ)(ŝ) ≫ AC ∪i π̂(θ)(t̂i) for any ŝ ∈ π̂(s)− π̂(t) and

t̂i ∈ π̂(t)− π̂(s) (1 ≤ i ≤ n) such that ŝ �AC t̂i. We suppose {θ1, . . . , θm} constructed by
each substitution θi satisfying ∀x ∈ V ar(s).xθi ∈ π̂(xθ) and ∀x 6∈ V ar(s).xθi ≡ x. Then
the following inclusion holds:

π̂(θ)(ŝ) ⊇ {ŝθj | 1 ≤ j ≤ m}.

We suppose {θi1, . . . , θ
i
mi
} constructed by each substitution θij satisfying ∀x ∈ V ar(ti).xθ

i
j ∈

π̂(xθ) and ∀x 6∈ V ar(ti).xθi ≡ x. From the linearity of t̂i the following equation holds:

π̂(θ)(t̂i) = {t̂iθ
i
j | 1 ≤ j ≤ mi}.

Since ŝ �AC t̂i, it follows that V ar(ŝ) ⊇ V ar(t̂i). Thus, {θi1, . . . , θ
i
mi
} ⊆ {θ1, . . . , θm}.

Hence, the following inclusion holds:

∪iπ̂(θ)(t̂i) ⊆ {t̂iθj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

From the stability of �AC , it follows that ŝθj �AC t̂iθj for any j. Therefore, it follows that
π̂(θ)(ŝ) ≫ AC{ŝθj | 1 ≤ j ≤ m} ≫ AC {t̂iθj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} ≫ AC ∪i π̂(θ)(t̂i).

(>mul
π ): It suffices to show that π̂(θ)(ŝ) ≫sub

AC
∪iπ̂(θ)(t̂i) for any ŝ ∈ π̂(s) − π̂(t),

t̂i ∈ π̂(t)− π̂(s) such that ŝ �sub
AC

t̂i. Thanks to the stability of �sub
AC
, as similar to the proof

for &mul
π , it follows that π̂(θ)(ŝ) ≫sub

AC ∪iπ̂(θ)(t̂i). �
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Lemma 4.2.28 Dhd ⊆&mul
π ∪ >mul

π .

Proof. Let s Dhd t. From the definition, s ∼
AC

C[t]p and p ∈ Ohd(C[t]) for some C. In the

case C ≡ �, π̂(s) = π̂(t) by Lemma 4.2.24. Thus s &mul
π t. Suppose that C 6≡ �. Since

p ∈ Ohd(C[t]), there is some term t′ and AC-symbol f such that s ∼
AC

C[t] ∼
AC

f(t′, t) and

f = (t)ε = (C)ε. From Lemma 4.2.24, π̂(s) = π̂(f(t′, t)). If π(f) = [] then π̂(f(t′, t)) =
{f} = π̂(t). Hence, it follows that f(t′, t) &mul

π t. If π(f) = [1, 2] then π̂(s) = π̂(f(t′, t))
= {f(v′, v) | v′ ∈ π̂(t′), v ∈ π̂(t)} ≫sub

AC
{v | v ∈ π̂(t)} = π̂(t). Hence, it follows that

s >mul
π t. If π(f) = 0 then π̂(s) = π̂(f(t′, t)) ⊇ π̂(t′) ∪ π̂(t) ≫ ACπ̂(t). Hence, it follows

that s &mul
π t. �

Theorem 4.2.29 Let R be an AC-TRS. If there exists an AC-reduction order > and an
argument filtering function π with the AC-condition such that

• f# is identified to f or π(f#) = [] for all AC-symbols f ,
• r̂ ∈ π̂(r)− π̂(l) is linear for all l → r ∈ R,
• l &mul

π r for all l → r ∈ R, and
• u# >mul

π v# for all 〈u#, v#〉 ∈ DP#
AC
(R),

then R is AC-terminating.

Proof. As similar to the proof of Theorem 4.2.15, using Theorem 4.2.26, Lemmas 4.2.27
and 4.2.28. �

Note that as similar to the proof of Theorem 4.2.26, it can be proved that for any
given AC-reduction order >, &mul

π is a weak AC-reduction order except for the stability.
Under the condition of Lemma 4.2.27, the strict part �mul

π of &mul
π is stable.

In order to show the usefulness of AC-multiset extension, we prove the AC-termination
of an AC-TRS to which not only traditional techniques but also single argument filtering
function and lexicographic argument filtering method cannot be applied.

Example 4.2.30 As an AC-reduction order >, we use the order >flat
rpo

(see Proposition
2.4.14). Consider the following AC-TRS R6 with Σ#

AC
= {f}.

R6 =















g(0, f(x, x)) → x
g(x, s(y)) → g(f(x, y), 0)
g(s(x), y) → g(f(x, y), 0)

g(f(x, y), 0) → f(g(x, 0), g(y, 0))

DP#

AC
(R6) =















〈g#(x, s(y)), g#(f(x, y), 0)〉
〈g#(s(x), y), g#(f(x, y), 0)〉
〈g#(f(x, y), 0), g#(x, 0)〉
〈g#(f(x, y), 0), g#(y, 0)〉

Let π(f) = 0 and s ⊲ 0. Then l &mul
π r for all l → r ∈ R6, and u# >mul

π v# for all
〈u#, v#〉 ∈ DP#

AC
(R6). From Theorem 4.2.29, R6 is AC-terminating.
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4.2.6 Polynomial Interpretation

Theorem 4.2.31 [43] Let A ⊆ N\{0}. We define the polynomial quasi-order &A as
follows:

s &A t
def
⇐⇒ ∀σ([[s]]σ > [[t]]σ) or ∀σ([[s]]σ = [[t]]σ)

If all AC-function symbols satisfy the condition of Proposition 2.4.5 then the polynomial
quasi-order &A is a weak AC-reduction order.

Proof. As similar to Proposition 2.4.5, we can prove that &A is AC-compatible. From
Theorem 3.2.14, &A is a weak AC-reduction order. �

Proposition 4.2.32 [52] Let A ⊆ N . We define the pair (&A, >A) as follows:

s &A t
def
⇐⇒ ∀σ([[s]]σ ≥ [[t]]σ), s >A t

def
⇐⇒ ∀σ([[s]]σ > [[t]]σ)

If all AC-function symbols satisfy the condition of Proposition 2.4.5 then the pair (&A

, >A) is a weak AC-reduction pair.

4.3 AC-Dependency Graph

The notion of dependency graphs introduced by Arts and Giesl is very useful to prove
termination of TRSs [1, 2]. In this section, we extend the notion to AC-TRSs.

Definition 4.3.1 An AC-dependency graph of R is a directed graph of which the nodes
are AC-dependency pairs, and there is an arc from 〈u#, v#〉 to 〈u′#, v′#〉 if 〈u#, v#〉〈u′#, v′#〉
is an AC-dependency chain.

Theorem 4.3.2 [43] Let R be an AC-TRS. If there exists a weak AC-reduction order &

such that

• l & r for all l → r ∈ R,
• u# & v# for all 〈u#, v#〉 on a cycle in the AC-dependency graph of R, and
• u# � v# for at least one 〈u#, v#〉 on each cycle

in the AC-dependency graph of R,

then R is AC-terminating.

Proof. As similar to the proof of Theorem 3.4.3. �

In general, AC-dependency graphs are not computable, because it is undecidable

whether there is some substitution θ such that (vθ)#
#
→ ∗Dhd (u

′θ)# for two AC-dependency
pairs 〈u#, v#〉 and 〈u′#, v′#〉. Since dependency graphs are also not computable in TRSs,
algorithms for generating approximated dependency graphs was introduced. We also pro-
pose another algorithm for generating an approximated AC-dependency graph, using the
techniques of Ω-reduction and ΩV -reduction, which are introduced to analyze decidable
call-by-need computations in TRSs [28, 55, 59].

Definition 4.3.3 Let Ω be a special constant symbol. A term t is an Ω-term if t ∈
T (Σ ∪ {Ω}, ∅). The prefix order ≥

Ω

over Ω-terms is defined as follows:
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• t≥
Ω

Ω for all t,

• f(s1, . . . , sn)≥
Ω

f(t1, . . . , tn) if si ≥
Ω

ti (1 ≤ i ≤ n).

We denote by tΩ the Ω-term obtained from t by replacing all variables in t by Ω.
Notice that tΩ≤

Ω

tθΩ for any term t and for any substitution θ.

In this section, T (Σ,V) and T (Σ∪ {Ω}, ∅) are abbreviated to T and TΩ, respectively.

Definition 4.3.4 Two Ω-terms t1 and t2 are compatible, written by t1 ↑ t2, if there is
some Ω-term s such that s≥

Ω

t1 and s≥
Ω

t2. A body AC-Ω-reduction relation over Ω-terms,

written by
bd
→
Ω
, is defined as follows:

s
bd
→
Ω
t

def
⇐⇒ s ∼

AC
C[s′]p ∧ s′ ↑ lΩ ∧ s′ 6≡ Ω ∧ t ≡ C[Ω]p ∧ p 6∈ Ohd(C[s′]p)

for some l → r ∈ R, s′, C[ ]p.

Lemma 4.3.5 The body AC-Ω-reduction
bd
→
Ω

is terminating.

Proof. It is trivial. �

NFΩ(t) denotes the set of all normal forms of t with respect to
bd
→
Ω
. Note that the

previous lemma guarantees the computability of NFΩ(t).

Definition 4.3.6 A body AC-ΩV -reduction from an Ω-term s to an Ω-term t, denoted by

s
bd
→
ΩV

t, is defined as follows:

s
bd
→
ΩV

t
def
⇐⇒ s ∼

AC
C[s′]p ∧ s′ ↑ lΩ ∧ s′ 6≡ Ω ∧ t ≡ C[rΩ]p ∧ p 6∈ Ohd(C[s′]p)

for some l → r ∈ R, C[ ]p, s′.

bd
→
ΩV

n denotes a
bd
→
ΩV

reduction of n steps.

Lemma 4.3.7 For any s, t ∈ TΩ, if s
bd
→
ΩV

∗t then t′ ≤
Ω

t for some t′ ∈ NFΩ(s).

Proof. It is trivial. �

Lemma 4.3.8 The following properties hold for any s, t ∈ T and s′ ∈ TΩ such that
s′ ≤

Ω

sΩ.

(a) s ∼
AC

t ⇒ ∃t′ ∈ TΩ. s
′ ∼
AC

t′ ≤
Ω

tΩ

(b) s
bd
→ ∗t ⇒ ∃t′ ∈ TΩ. s

′ bd
→
ΩV

∗t′ ≤
Ω

tΩ
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Proof. It is routine. �

The predicate isConnect(v, u′) is defined as isConnect(v, u′) ⇐⇒ ∃θ. vθ
bd
→ ∗Dhd u

′θ.
Note that two AC-dependency pairs 〈u, v〉 and 〈u′, v′〉 is connectable if isConnect(v, u′)
holds. For a given approximation level n (n ≥ 0), the above two lemmas offer a decidable
approximation isConnectn(v, u

′) of isConnect(v, u′) as follows:

• (v)ε 6∈ ΣAC .

isConnectn(v, u
′) =

{

True if Connectn(v, u
′) 6= ∅

False if Connectn(v, u
′) = ∅

Connectn(v, u
′) = {t | t ∼

AC
t′ ∈ Reachn(vΩ), t ↑ u′

Ω}

Reachn(t) = {t′ | t
bd
→
ΩV

mt′, m < n} ∪ {t′ | t
bd
→
ΩV

nt′′, t′ ∈ NFΩ(t
′′)}

• (v)ε ∈ ΣAC .

isConnectn(v, u
′) =

{

True if (v)ε = (u′)ε
False if (v)ε 6= (u′)ε

Note that the predicate isConnectn is decidable for every approximation level n.

Definition 4.3.9 The n-approximated AC-dependency graph of R is a directed graph of
which the nodes are AC-dependency pairs, and there is an arc from 〈u#, v#〉 to 〈u′#, v′#〉
if isConnectn(v, u

′) holds.

Lemma 4.3.10 Let R be an arbitrary AC-TRS and n an arbitrary approximation level.
An AC-dependency graph of R is a subgraph of the n-approximated AC-dependency graph
of R.

Proof. For each arc (〈u#, v#〉, 〈u′#, v′#〉) of an AC-dependency graph, it is enough to
show isConnectn(v, u

′) = True. If (v)ε ∈ ΣAC then it is trivial. Let (v)ε 6∈ ΣAC and

vθ
bd
→ ∗t ∼

AC
u′θ for some t and θ. From Lemma 4.3.8(b), vΩ

bd
→
ΩV

mt′ for some m and t′ ∈ TΩ

such that t′ ≤
Ω

tΩ. We distinguish the following two cases:

• m < n:
By the assumption, t′ ∈ Reachn(vΩ). From Lemma 4.3.8(a), t′ ∼

AC
u′′ for some u′′ ∈

TΩ such that u′′ ≤
Ω

u′θΩ. Thus, u
′′ ↑ u′

Ω. Therefore, isConnectn(v, u
′) = True.

• n ≤ m:

Let vΩ
bd
→
ΩV

nt′′
bd
→
ΩV

∗t′. From Lemma 4.3.7, t′′′ ≤
Ω

t′ for some t′′′ ∈ NFΩ(t
′′). Thus,

t′′′ ∈ Reachn(vΩ). From Lemma 4.3.8(a), t′′′ ∼
AC

u′′ for some u′′ ∈ TΩ such that

u′′≤
Ω

u′θΩ. Thus, u
′′ ↑ u′

Ω. Therefore, isConnectn(v, u
′) = True. �
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Theorem 4.3.11 [43] Let R be an AC-TRS and n an approximation level. If there exists
a weak AC-reduction order & such that

• l & r for all l → r ∈ R,
• u & v for all 〈u#, v#〉 on a cycle

in the n-approximated AC-dependency graph, and
• u# � v# for at least one 〈u#, v#〉 on each cycle

in the n-approximated AC-dependency graph,

then R is AC-terminating.

Proof. It is a direct consequence of Theorem 4.3.2 and Lemma 4.3.10. �

Finally, in order to show the usefulness of the approximated AC-dependency graph, we
prove the AC-termination of AC-TRS to which traditional techniques cannot be applied.

Example 4.3.12 Let ΣAC = {N} and R be the following AC-TRS:















max(L(x)) → x
max(N(L(0), L(y))) → y

max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))

The data structure N(L(0), N(L(0), L(s(0)))) for binary tree naturally represents the mul-
tiset {0, 0, s(0)} by interpreting N as an AC-function symbol. The normal form of term
max(t) corresponds with maximal number in non-empty multiset t. For this AC-TRS R,
the 1-approximated AC-dependency graph is displayed as follows (Figure 4.1):

<max (N(L(x),N(y,z))), max (N(L(x),L(max(N(y,z)))))># #

<max (N(L(x),N(y,z))), max (N(y,z))># #

<max (N(L(s(x)),L(s(y)))), max (N(L(x),L(y)))># #

Figure 4.1: AC-dependency graph

Let A = N\{0}. We associate the polynomial 0A = 1, sA = X + 1, LA = X,
NA = X + Y and maxA = max#

A = X. From Theorem 4.2.31, this interpretation offers a
weak AC-reduction order &. Moreover, it satisfies the AC-marked condition. It is trivial
that l & r for all l → r ∈ R, and for all 〈u#, v#〉 on each cycle in the 1-approximated
AC-dependency graph (Figure 4.1), we have u# > v# as follows:

max#(N(L(s(x)), L(s(y)))) > max#(N(L(x), L(y)))

max#(N(L(x), N(y, z))) > max#(N(y, z))

Therefore, R is AC-terminating by theorem 4.3.11.
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This example displays the usefulness of approximated AC-dependency graphs, because
it is difficult to give a weak AC-reduction order directly whose strict part is compatible to
the AC-dependency pair 〈max#(N(L(x), N(y, z))), max#(N(L(x), L(max(N(y, z)))))〉.
Even for TRS R, it is difficult to give a weak reduction order directly whose strict part is
compatible to the pair.
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Chapter 5

Argument Filtering Transformation

Elimination transformations have a lively studied in the 1990’s. Elimination transfor-
mations try to transform a given TRS into a TRS whose termination is easier to prove
than the original one. The dummy elimination [20], the distribution elimination [53, 67],
the general dummy elimination [21] and the improved general dummy elimination [57]
are examples of elimination transformations. Moreover, the dummy elimination and the
distribution elimination extend to AC-TRSs in [22] and [58], respectively.

In this chapter, we first study the relation between various elimination transformations
and the argument filtering method based on AC-dependency pairs. The key of our result
is the observation that the argument filtering method combining with the AC-dependency
pair technique is essential in all elimination transformations. Indeed, we present remark-
able simple proofs for the soundness of all elimination transformations based on this
observation, though the original proofs treated as rather different methods respectively.
This observation also leads us to a new powerful elimination transformations, called the
argument filtering transformation, which is not only more powerful than all the other
elimination transformations but also especially useful to make clear the essential relation
hidden behind these methods.

5.1 Soundness Condition for Transformation

In this section, using AC-dependency pairs and the argument filtering method, we show
a theorem, which makes a general and essential property clear for transformations of
AC-TRSs to be sound with respect to AC-termination.

Definition 5.1.1 We define the including relation ⊑ as follows:

R1 ⊑ R2
def
⇐⇒ ∀l → r ∈ R1.∃C. l → C[r] ∈ R2

Theorem 5.1.2 Let R be an AC-TRS, R′ an AC-terminating AC-TRS and π an argu-
ment filtering function with the AC-condition. If π(R) ⊆ R′ and π(DP (R)) ⊑ R′ then R
is AC-terminating.

Proof. Assume that R is not AC-terminating. We define > as
+
→

R′/AC

. The AC-termination

of R′ ensure that > is an AC-reduction order. From the assumption, &π is compatible with
R, >π is compatible with DP (R), and &π ∪ >π is compatible with DPAC(R)\DP (R).
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Thanks to Theorem 4.2.17, there exists an AC-symbol f with π(f) = [] and an infinite
unmarked AC-dependency chain

〈f(l0, z0), f(r0, z0)〉〈f(l1, z1), f(r1, z1)〉〈f(l2, z2), f(r2, z2)〉 · · ·

such that f(riθ, ziθ)
∗
→
bd
Dhdf(li+1θ, zi+1θ) (i = 0, 1, 2, . . .) for some AC-terminating sub-

stitution θ. If riθ
∗
→

R/AC
t with (t)ε = f , then it is a contradiction with f ≡ π(li) →

R′/AC

π(ri)
∗
→

R′/AC

π(t) ≡ f and AC-termination of R′. Thus, riθ can not be reduced to a term

with the root symbol f .
For any t, we define Bf(t) as follows:

Bf (t) =

{

{t} if (t)ε 6= f
{t1, . . . , tn} if t ≡ f(t1, . . . , tn)

where t is the flattening term of t, and ti are flattening terms of ti.
Suppose that f(ri, zi)θ

∗
→ f(ti, t

′
i) Dhdf(li+1, zi+1)θ → f(ri+1, zi+1)θ such that riθ

∗
→ ti

and ziθ
∗
→ t′i. Then the following properties hold:

(1) |Bf(riθ)| = |Bf(ti)| = 1

(2) Bf(f(ti, t
′
i)) ⊇ Bf (f(li+1, zi+1)θ)

(3) |Bf(f(li, zi)θ)| > |Bf(f(ri, zi)θ)|

Properties (1) and (2) are trivial. Property (3) follows from |Bf (liθ)| ≥ 2 and (1).
Let ni = |Bf(t

′
i)| − |Bf(ziθ)|. Then, it is obvious that ni ≥ 0 and |Bf(f(ri, zi)θ)|+ ni

> |Bf(f(ri+1, zi+1)θ)|. Since z0θ is AC-terminating, Σ{|Bf(t)| | z0θ
∗
→ t} is finite. Because

Σ∞
i=0ni < Σ{|Bf (t)| | z0θ

∗
→ t}, Σ∞

i=0ni is also finite. Hence, there exists a integer k such
that ni = 0 for all i ≥ k. Therefore it follows that |Bf(f(rk, zk)θ)| > |Bf (f(rk+1, zk+1)θ)|
> |Bf(f(rk+2, zk+2)θ)| > · · ·. It is a contradiction. �

Taking R as a given AC-TRS and R′ as a transformed AC-TRS in an elimination
transformation, the above simple theorem can uniformly explain why elimination trans-
formations work well. This fact is very interesting because in the original literatures the
soundness of these elimination transformations were proved by rather different methods.
In the following sections, we will explain how Theorem 5.1.2 simplifies the requirement
conditions in elimination transformations into acceptable one.

Note that in the above theorem we use dependency pairs DP (R) instead of AC-
dependency pairs DPAC(R). Though the fact rises the difficulty of the proof, it is very
effective when we analyze elimination transformations.

Theorem 5.1.3 Let R be an AC-TRS, R′ a simply AC-terminating AC-TRS and π an
argument filtering function with the AC-condition. If π(R ∪ DP (R)) ⊑ R′ then R is
AC-terminating.

Proof. As similar to Theorem 5.1.2 by defining > as
+

−−−→
R′

∪Emb/AC

. �
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5.2 Argument Filtering Transformation

In this section, we design a new elimination transformation, called the argument filtering
transformation. This transformation is designed based on Theorem 5.1.2, which is the
essence for elimination transformations.

Definition 5.2.1 [46](Argument Filtering Transformation) Let π be an argument filter-
ing function. The argument filtering transformation (AFTπ) is defined as follows:

•







decπ(x) = ∅
decπ(f(t1, . . . , tn)) =

⋃

i 6=π(f){ti} ∪
⋃n

i=1 decπ(ti) if π(f) = i

decπ(f(t1, . . . , tn)) =
⋃

i 6∈π(f){ti} ∪
⋃n

i=1 decπ(ti) otherwise

• pickπ(T ) = {t ∈ T | π(t) includes some defined symbols of R}

where π(f) =

{

[i] if π(f) = i
π(f) otherwise

• AFTπ(R) = π(R) ∪ {π(l) → π(r′) | l → r ∈ R, r′ ∈ pickπ(decπ(r))}

Example 5.2.2 Let

R = {f(x, f(x, x)) → f(e(e′(0, 1, 2), 3), e′′(f(4, 5), 6)), 4 → 1, 5 → 1}.

Here, DF (R) = {f, 4, 5}. Let r ≡ f(e(e′(0, 1, 2), 3), e′′(f(4, 5), 6)), π(e) = [], π(e′) = [1, 3]
and π(e′′) = 2. Then, we obtain AFTπ(R) as follows (Figure 5.1):

π(r) = f(e, 6)

decπ(r) = {e′(0, 1, 2), 1, 3, f(4, 5)}

pickπ(decπ(r)) = {f(4, 5)}

π(R) = {f(x, f(x, x)) → f(e, 6), 4 → 1, 5 → 1}

AFTπ(R) = π(R) ∪ {f(x, f(x, x)) → f(4, 5)}

The termination of AFTπ(R) is easily proved by the recursive path order. Thus, R is
terminating, if the argument filtering transformation is sound. The soundness is showed
in this section.

Since the argument filtering transformation is designed based on Theorem 5.1.2, we
must keep information of dependency pairs, i.e., π(DP (R)) ⊑ AFTπ(R). For this moti-
vation, π is useful. In fact, using π, we can easily check whether a given term is necessary
to hold π(DP (R)) ⊑ AFTπ(R).

Lemma 5.2.3 Let C be a context and t a term. Then, there exists a context D such that
D[π(t)] ∈ π(decπ(C[t])) or D[π(t)] ≡ π(C[t]).

Proof. We prove the claim by induction on the structure of C. In the case C ≡ �, it
is trivial. Suppose that C ≡ f(t1, . . . , ti−1, C

′, ti+1, . . . , tn). From induction hypothesis,
there exists a context D′ such that D′[π(t)] ∈ π(decπ(C

′[t])) or D′[π(t)] ≡ π(C ′[t]). In the
former case, it follows that D′[π(t)] ∈ π(decπ(C

′[t])) ⊆ π(decπ(C[t])). In the latter case,
if i = π(f) or i ∈ π(f) then trivial. Otherwise, D′[π(t)] ≡ π(C ′[t]) ∈ π(decπ(C[t])) from
the definition of decπ. �
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Figure 5.1: Argument Filtering Transformation

Theorem 5.2.4 If AFTπ(R) is AC-terminating and π satisfies the AC-condition then R
is AC-terminating.

Proof. From the definition, π(R) ⊆ AFTπ(R). Let 〈u, v〉 ∈ DP (R). From the definition
of DP , there exists a rule u → C[v] ∈ R. From Lemma 5.2.3, there exists a context D
such that D[π(v)] ∈ π(decπ(C[v])) or D[π(v)] ≡ π(C[v]). In the former case, from the
definition ofDP and π, (π(v))ε is a defined symbol. Thus, D[π(v)] ∈ π(pickπ(decπ(C[v]))).
Therefore, it follows that π(u) → D[π(v)] ∈ AFTπ(R). In the latter case, it follows that
π(u) → D[π(v)] ∈ π(R) ⊆ AFTπ(R). From Theorem 5.1.2, R is AC-terminating. �

The two corollaries follow from the above theorem.

Corollary 5.2.5 If AFTπ(R) is terminating and π(f) = [] for any AC-symbols f then R
is AC-terminating.

Corollary 5.2.6 [46] If AFTπ(R) is terminating then R is terminating.

From the proof of the above theorem, it is obvious that the second argument {π(l) →
π(r′) | l → r ∈ R, r′ ∈ pickπ(decπ(r))} of the definition of the argument filtering trans-
formation AFTπ is used only to keep information of dependency pairs. Thus, introducing
redundancy context does not destroy the soundness of argument filtering transformation.
Therefore, we can define another argument filtering transformation AFT

~Ci
π (R) as

AFT
~Ci
π (R) = π(R) ∪ {l1 → C1[r1], . . . , ln → Cn[rn]}

where {l1 → r1, . . . , ln → rn} = {π(l) → π(r′) | l → r ∈ R, r′ ∈ pickπ(decπ(r))} and ~Ci

denotes the list of contexts C1, C2, . . . , Cn.
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Corollary 5.2.7

1. If AFT
~Ci
π (R) is AC-terminating and π satisfies the AC-condition then R is AC-

terminating.

2. If AFT
~Ci
π (R) is terminating and π(f) = [] for any AC-symbols f then R is AC-

terminating.

3. [46] If AFT
~Ci
π (R) is terminating then R is terminating.

5.3 Comparison with Other Eliminations

In this section, we compare other elimination transformations with the argument filtering
transformation. As a result, we conclude that the argument filtering transformation is a
generalization of these elimination transformations.

5.3.1 Dummy Elimination

Definition 5.3.1 [20](Dummy Elimination) Let e be a function symbol, called an elimi-
nated symbol. The dummy elimination (DEe) is defined as follows:

•







cape(x) = x
cape(e(t1, . . . , tn)) = ⋄
cape(f(t1, . . . , tn)) = f(cape(t1), . . . , cape(tn)) if f 6= e

•







dece(x) = ∅
dece(e(t1, . . . , tn)) =

⋃n
i=1({cape(ti)} ∪ dece(ti))

dece(f(t1, . . . , tn)) =
⋃n

i=1 dece(ti) if f 6= e

• DEe(R) = {cape(l) → r′ | l → r ∈ R, r′ ∈ {cape(r)} ∪ dece(r)}

Example 5.3.2 Let t ≡ f(e(0, g(1, e(2, 3))), 4). Then, cape(t) = f(⋄, 4) and dece(t) =
{0, 2, 3, g(1, ⋄)} (Figure 5.2).

Proposition 5.3.3 [20] If DEe(R) is terminating then R is terminating.

Proposition 5.3.4 [22] If DEe(R) is terminating and e is only AC-symbol (i.e., ΣAC =
{e}) then R is AC-terminating.

For π(e) = [], we can treat the constant π(e(· · ·)) as ⋄.

Lemma 5.3.5 For π(e) = [], AFTπ(R) ⊆ DEe(R).
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Figure 5.2: Dummy Elimination

Proof. It suffices to show that π(decπ(t)) = dece(t) by induction on t. In the case
t ∈ V, it is trivial. Suppose that t ≡ f(t1, . . . , tn). In the case f 6= e, it follows that
π(decπ(f(t1, . . . , tn))) =

⋃n
i=1 π(decπ(ti)) =

⋃n
i=1 dece(ti) = dece(f(t1, . . . , tn)). In the

case f = e, it follows that π(decπ(e(t1, . . . , tn))) =
⋃n

i=1 ({π(ti)} ∪ π(decπ(ti))) =
⋃n

i=1

({cape(ti)} ∪ dece(ti)) = dece(e(t1, . . . , tn)). �

This lemma means that the argument filtering transformation is a proper extension of
the dummy elimination. The corollary follows from the above lemma.

Corollary 5.3.6 If DEe(R) is AC-terminating, simply AC-terminating, terminating or
simply terminating then so is AFTπ(R) with π(e) = [], respectively.

The following corollary is a directly consequence of the above corollary.

Corollary 5.3.7 If DEe(R) is AC-terminating then R is AC-terminating.

Note that this corollary includes Propositions 5.3.3 and 5.3.4 as special cases, i.e.,
ΣAC = ∅ and ΣAC = {e}, respectively.

5.3.2 Distribution Elimination

Definition 5.3.8 [67](Distribution Elimination) A rule l → r is a distribution rule for
e if l ≡ C[e(x1, . . . , xn)] and r ≡ e(C[x1], . . . , C[xn]) for some non-empty context C in
which e does not occur and pairwise different variables x1, . . . , xn. Let e be an eliminated
symbol. The distribution elimination (DISe) is defined as follows:

• Ee(t) =







{t} if t ∈ V
⋃n

i=1Ee(ti) if t ≡ e(t1, . . . , tn)
{f(s1, . . . , sn) | si ∈ Ee(ti)} if t ≡ f(t1, . . . , tn) with f 6= e
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• DISe(R) = {l → r′ | l → r ∈ R is not a distribution rule for e, r′ ∈ Ee(r)}

Example 5.3.9 Let t ≡ f(e(0, g(1, e(2, 3))), 4).
Then, Ee(t) = {f(0, 4), f(g(1, 2), 4), f(g(1, 3), 4)} (Figure 5.3).
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Figure 5.3: Distribution Elimination

Unfortunately, the distribution elimination is not sound with respect to AC-termination,
i.e., AC-termination of DISe(R) does not ensure AC-termination of R. With respect to
termination it is also not sound. Thus, the distribution elimination requires suitable
restrictions to ensure the soundness.

Proposition 5.3.10 Suppose that each rule l → r ∈ R is a distribution rule or a rule in
which the eliminated symbol e does not occur in l.

(a) [67] If DISe(R) is terminating and right-linear then R is terminating.

(b) [53] If DISe(R) is terminating and there exist no distribution rule in R then R is
terminating.

(c) [58] If DISe(R) is terminating, right-linear and e is only AC-symbol (i.e. ΣAC = {e})
then R is AC-terminating.

Lemma 5.3.11 Let π(e) = i such that 1 ≤ i ≤ arity(e). Under the condition of Propo-
sition 5.3.10 (b), π(R) ⊆ DISe(R) and AFTπ(R) ⊑ DISe(R).

Proof. π(R) ⊆ DISe(R) is trivial. From the definition of AFTπ, for any l → r ∈ AFTπ(R)
there exists a rule l′ → C ′[r′] ∈ R with l ≡ π(l′) and r ≡ π(r′). Thus, it suffices to show
that for any t and C ′, there exists a context C such that C[π(t)] ∈ Ee(C

′[t]). It is easily
proved by induction on C ′. �
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Theorem 5.3.12 Suppose that π(e) = 1, e 6∈ ΣAC and the condition of Proposition

5.3.10 (b). If DISe(R) is AC-terminating or terminating then so is AFT
~Ci
π (R) for some

~Ci, respectively. If DISe(R) is simply AC-terminating or simply terminating then so is
AFTπ(R), respectively.

Proof. From Lemma 5.3.11, it is trivial. �

The following corollary is a directly consequence of the above theorem.

Corollary 5.3.13 If DISe(R) is AC-terminating, e 6∈ ΣAC and there exist no distribution
rule in R then R is AC-terminating.

Note that this corollary includes Proposition 5.3.10 as a special case, i.e., ΣAC = ∅.
It is not so easy to treat the cases of conditions (a) and (c) in Proposition 5.3.10,

because the distribution elimination eliminate distribution rules themselves. In order to
treat such cases, we use the AC-multiset extension of the argument filtering method.

Theorem 5.3.14 Suppose that each rule l → r ∈ R is a distribution rule or a rule in
which the eliminated symbol e does not occur in l. If DISe(R) is AC-terminating and
right-linear then R is AC-terminating.

Proof. Let RD be the AC-TRS constructed by all distribution rule in R, and R0 = R\RD.

Let > be
+

−−−→
DISe(R)/AC

. Since DISe(R) is AC-terminating, > is an AC-reduction order. We

denote DP0 dependency pairs constructed from R0, DP ex
0 extended dependency pairs

constructed from R0, DPD dependency pairs constructed from RD, and DP ex
D extended

dependency pairs constructed from RD.

• arity(e) = 1: We choose π(e) = 1.

It is trivial that π(R0) = DISe(R) and π(l) ≡ π(r) for all l → r ∈ RD. Thus, if
R is not AC-terminating then there exists an infinite reduction t1 →

RD

t2 →
RD

t3 →
RD

· · ·.

However, RD is trivially AC-terminating. It is a contradiction.

• arity(e) > 1: We choose π(e) = 0.

First, we investigate non distribution rules. It is obvious that π̂(l) = {l} and
l → r′ ∈ DISe(R) for any l → r ∈ R0 and r′ ∈ π̂(r). Thus, l &mul

π r and l >mul
π r

for any rule l → r ∈ R0. It follows that s→
R0

t implies s &mul
π t, because &mul

π is

monotonic and stable by the right-linearity of DISe(R). Moreover, it follows that
uθ >mul

π vθ for all θ and 〈u, v〉 ∈ DP ex
0 .

On the other hand, it is obvious that for any 〈u, v〉 ∈ DP0 and v′ ∈ π̂(v), π̂(u) = {u}
and u → C[v′] ∈ DISe(R) for some C. Thus, u >mul

π v for any 〈u, v〉 ∈ DP0. Since
DISe(R) is right-linear, it follows that uθ >mul

π vθ for all θ and 〈u, v〉 ∈ DP0.

Next, we focus on the distribution rules. For any distribution rule C[e(x1, . . . , xn)] →
e(C[x1], . . . , C[xn]) ∈ RD, it follows that π̂(C[e(x1, . . . , xn)]) = {C[x1], . . . , C[xn]}

=π̂(e(C[x1], . . . , C[xn])). Thus, s
∗
→
RD

t implies s &mul
π t. Moreover, f(l, z)θ &mul

π

f(r, z)θ for any 〈f(l, z), f(r, z)〉 ∈ DP ex
D and θ. The dependency pair in DPD can
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be denoted by 〈C[e(x1, . . . , xn)], v〉 such that C ′[v] ≡ C[xi] for some i and C ′. Since
π̂(C[e(x1, . . . , xn)]) = {C[x1], . . . , C[xn]} ≫AC {C[xi]} = {C ′[v]}, it follows that
C[e(x1, . . . , xn)]θ >mul

π vθ for any θ.

Finally, we prove this theorem based on the above properties. Assume that R is
not AC-terminating. From Theorem 4.1.10, there exists an infinite unmarked AC-
dependency chain 〈u0, v0〉〈u1, v1〉 · · · and θ such that viθ

∗
→

R/AC
ti Dhd ui+1θ for some

ti (i = 1, 2, . . .). We have already proved that viθ &mul
π ti, uiθ &mul

π viθ for all
〈ui, vi〉 ∈ DP ex

D , and uiθ >mul
π viθ for all 〈ui, vi〉 ∈ DPAC(R)\DP ex

D . From Lemma
4.2.28 and �mul

π ⊆>mul
π , it follows that ti ∼

AC
ui+1θ or ti >mul

π ui+1θ. Hence there

exists a number m such that 〈ui, vi〉 ∈ DP ex
D for all i ≥ m. Moreover, there exists

an infinite AC-reduction sequence f(l0, z0)θ →
RD

f(r0, z0)θ
∗
→
RD

f(l1, z1) →
RD

f(r1, z1)θ · · ·

for some li → ri ∈ RD (i = 0, 1, . . .). However, RD is trivially AC-terminating. It is
a contradiction. �

Note that this theorem includes Proposition 5.3.10 (a) and (c) as special cases, i.e.,
ΣAC = ∅ and ΣAC = {e}, respectively.

5.3.3 General Dummy Elimination

For any e ∈ Σ, an e-status τ satisfy τ(e) = (∅, 0) or (I, i) with i ∈ I.

Definition 5.3.15 [21](General Dummy Elimination) Let e be an eliminated symbol and
τ(e) = (I, i). The general dummy elimination (GDEe) is defined as follows:

• capi(t) =















t if t ∈ V
f(capi(t1), . . . , capi(tn)) if t ≡ f(t1, . . . , tn) ∧ f 6= e
capi(ti) if t ≡ e(t1, . . . , tn) ∧ i 6= 0
⋄ if t ≡ e(t1, . . . , tn) ∧ i = 0

• Ei(t) =







{t} if t ∈ V
{f(s1, . . . , sn) | sj ∈ Ei(tj)} if t ≡ f(t1, . . . , tn) ∧ f 6= e
E(ti) if t ≡ e(t1, . . . , tn)

• E(t) =







{t} if t ∈ V
{cap0(t)} if I = ∅
⋃

j∈I Ej(t) if I 6= ∅

• dec(t) =







∅ if t ∈ V
⋃n

j=1 dec(tj) if t ≡ f(t1, . . . , tn) ∧ f 6= e
⋃n

j=1 dec(tj) ∪
⋃

j 6∈I E(tj) if t ≡ e(t1, . . . , tn)

• GDEe(R) = {capi(l) → r′ | l → r ∈ R, r′ ∈ E(r) ∪ dec(r)}
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Figure 5.4: General Dummy Elimination

Example 5.3.16 Let t ≡ f(0, e(f(1, e(2, 3, 4)), 5, 6)) and τ(e) = ({1, 3}, 1).
Then, E(t) = {f(0, 6), f(0, f(1, 2)), f(0, f(1, 4))} and dec(t) = {5, 3} (Figure 5.4).

Proposition 5.3.17 [21] If GDEe(R) is terminating then R is terminating.

Lemma 5.3.18 Let τ(e) = (I, i). In the case τ(e) = (∅, 0), we define π(e) = []. In the
case e 6∈ ΣAC and τ(e) = (I, i) with i ∈ I, we define π(e) = i. Then π(R) ⊆ GDEe(R)
and AFTπ(R) ⊑ GDEe(R).

Proof. π(R) ⊆ GDEe(R) is trivial. In the case τ(e) = (∅, 0), it is trivial that DEe(R) =
GDEe(R). Thus, AFTπ(R) ⊆ GDEe(R). In the case e 6∈ ΣAC and τ(e) = (I, i) with
i ∈ I, as similar to Lemma 5.3.11 by replacing Ee(r) with dec(r) ∪ E(r). �

Theorem 5.3.19 Suppose that e 6∈ ΣAC or τ(e) = (∅, 0). If GDEe(R) is AC-terminating

or terminating then so is AFT
~Ci
π (R), respectively. If GDEe(R) is simply AC-terminating

or simply terminating then so is AFTπ(R), respectively.

Proof. From Lemma 5.3.18, it is trivial. �

Theorem 5.3.20 Suppose that GDEe(R) is AC-terminating.

1. If e 6∈ ΣAC or τ(e) = (∅, 0) then R is AC-terminating.

2. If GDEe(R) is right-linear then R is AC-terminating.
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Proof. (1) A directly consequence of Theorem 5.3.19. (2) Suppose that e ∈ ΣAC and
τ(e) = (I, i) with i ∈ I. We choose π(e) = 0. Thanks to capi(l) ∈ π̂(l), as similar to
Theorem 5.3.14. �

Note that this theorem (1) includes Proposition 5.3.17 as a special case, i.e., ΣAC = ∅.
We give the following example that the argument filtering transformation can be ap-

plied to, but the general dummy elimination can not be.

Example 5.3.21 Consider the AC-TRS

R =







g(a) → g(b)
b → f(a, a)

f(a, a) → g(d)

with ΣAC = {f}. Let π(f) = []. Then,

AFTπ(R) =







g(a) → g(b)
b → f
f → g(d)

The termination of AFTπ(R) is easily proved by the recursive path order with the prece-
dence a⊲b⊲f⊲g⊲d. From Corollary 5.2.5, R is AC-terminating. We easily observe that
the dummy elimination, the distribution elimination and the general dummy elimination
can not be applied. Indeed, the following systems are clearly not terminating.

τ(f) GDEf(R)

(∅, 0)

g(a) → g(b)
b → ⋄
b → a
⋄ → g(d)

({1}, 1)
g(a) → g(b)

b → a
a → g(d)

Note that the AC-termination of R is not easily proved since R is not simply AC-terminating.

5.3.4 Improved General Dummy Elimination

Definition 5.3.22 [57](Improved General Dummy Elimination) The functions capi, E
and dec are the same as that of the general dummy elimination. In the case e ∈ DF (R),
we take IGDEe(R) = GDEe(R). Otherwise,

• E ′(t) = {s ∈ E(t) | s includes some defined symbols of R}

• dec′(t) = {s ∈ dec(t) | s includes some defined symbols of R}

• IGDEe(R) = {capi(l) → r′ | l → r ∈ R, r′ ∈ {capi(r)} ∪ E ′(r) ∪ dec′(r)}
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Proposition 5.3.23 [57] If IGDEe(R) is terminating then R is terminating.

Lemma 5.3.24 Let τ(e) = (I, i). In the case τ(e) = (∅, 0), we define π(e) = []. In the
case e 6∈ ΣAC and τ(e) = (I, i) with i ∈ I, we define π(e) = i. Then π(R) ⊆ IGDEe(R)
and AFTπ(R) ⊑ IGDEe(R).

Proof. As similar to Lemma 5.3.18. �

Theorem 5.3.25 Suppose that e 6∈ ΣAC or τ(e) = (∅, 0). If IGDEe(R) is AC-terminating

or terminating then so is AFT
~Ci
π (R), respectively. If IGDEe(R) is simply AC-terminating

or simply terminating then so is AFTπ(R), respectively.

Proof. From Lemma 5.3.24, it is trivial. �

Theorem 5.3.26 Suppose that IGDEe(R) is AC-terminating.

1. If e 6∈ ΣAC or τ(e) = (∅, 0) then R is AC-terminating.

2. If IGDEe(R) is right-linear then R is AC-terminating.

Proof. As similar to Theorem 5.3.20. �

Note that this theorem (1) includes Proposition 5.3.23 as a special case, i.e., ΣAC = ∅.
At the end, we give an example that the argument filtering transformation can be

applied to, but other elimination transformations discussed here can not be.

Example 5.3.27 Consider the AC-TRS

R =















f(f(x)) → f(g(f(x), x))
f(f(x)) → f(h(f(x), f(x)))
g(x, y) → y
h(x, x) → g(x, 0)

with ΣAC = {h}. Let π(g) = [2] and π(h) = []. Then,

AFTπ(R) =























f(f(x)) → f(g(x))
f(f(x)) → f(x)
f(f(x)) → f(h)

g(y) → y
h → g(0)

The termination of AFTπ(R) is easily proved by the recursive path order with the prece-
dence f ⊲ h⊲ g ⊲ 0. From Corollary 5.2.5, R is AC-terminating.

We observe that the improved general dummy elimination can not be applied. In
fact, we can see that IGDEf(R), IGDEg(R) and IGDEh(R) are not terminating for
all status τ . The dummy elimination, the distribution elimination and the general dummy
elimination cannot be applied, too. Note that the AC-termination of R is not easily proved
since R is not simply AC-terminating.
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5.4 Comparison with Argument Filtering Method

In the previous section, we unified all elimination transformations by the argument filter-
ing transformation, which is designed based on AC-dependency pairs and the argument
filtering method. The reader might have the question which is more useful, the argu-
ment filtering method or the argument filtering transformation. Here, we say that the
argument filtering method succeeds to prove AC-termination when Theorem 4.2.15 is
applicable with a suitable AC-compatible simplification order, and we say that the ar-
gument filtering transformation succeeds to prove AC-termination when we prove the
AC-termination of AFTπ(R) by a suitable AC-compatible simplification order and The-
orem 5.2.4 is applicable.

Suppose that π(f) = [] for some defined AC-symbol f . Then the argument filtering
method always fails, because an extended dependency pair 〈f(l, z)#, f(r, z)#〉 for f pro-
duces 〈f#, f#〉 by π, which can not be ordered by the strict part of any weak AC-reduction
order. Notice that π(f) = [] requires π(f#) = [] in Theorem 4.2.15. Hence the argument
filtering transformation is more useful than the argument filtering method in such cases.
Indeed, Examples 5.3.21 and 5.3.27 are such examples.

On the other hand, in the case π(f) = [1, 2] for all defined AC-symbols, if the ar-
gument filtering transformation succeed to prove the AC-termination of AC-TRS R by
a simplification order then the argument filtering method also succeed to prove the AC-
termination by the same simplification order, because π(R)∪π(DP (R)) ⊑ AFTπ(R). The
reader might have the question what kind of AC-TRSs the argument filtering method has
an extra power. The following theorem is an answer.

Theorem 5.4.1 Suppose that π(R) ∪ π(DP (R)) ⊑ R′ and π(f) = [1, 2] for all f ∈
ΣAC∩DF (R). If R∪DP (R) is not AC-terminating then R′ is not simply AC-terminating.

Proof. Assume that R′ is simply AC-terminating. We define > as
+

−−−→
R′

∪Emb/AC

. The AC-

termination of R′ ensures that > is an AC-compatible simplification order. It is trivial
that π(RD)∪π(DP (RD)) ⊑ R′ where RD = R∪DP (R). Thus, l &π r for all l → r ∈ RD

and u �π v for all 〈u, v〉 ∈ DP (RD). For any extended unmarked dependency pair
〈f(l, z), f(r, z)〉, it follows that π(f(l, z)) ≡ f(π(l), z) > f(π(r), z) ≡ π(f(r, z)). By
regarding that f# is identified to f , RD is AC-terminating by Theorem 4.2.15. It is a
contradiction. �

In the case π(f) = [1, 2] for all defined AC-symbols, this theorem means that if
R∪DP (R) is not AC-terminating then AFTπ(R) is not simply AC-terminating, because
π(R)∪ π(DP (R)) ⊑ AFTπ(R). Hence the argument filtering transformation with simpli-
fication orders always fails to prove the AC-termination of R.

Finally, we give two examples such that R is AC-terminating but R ∪ DP (R) is not
AC-terminating. The AC-termination of these examples was proved by the argument
filtering method in Example 4.2.16. Hence the argument filtering method is more useful
than the argument filtering transformation for such AC-TRSs.

Example 5.4.2 The following AC-TRSs R2 and R3 are displayed in Example 4.2.16. In
both systems, ΣAC = {h}.
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• R2 is AC-terminating, but DP (R2) and R2 ∪DP (R2) are not AC-terminating.

R2 =

{

f(f(x)) → f(g(x))
g(x) → h(f(x), f(x))

DP (R2) =







f(f(x)) → f(g(x))
f(f(x)) → g(x)

g(x) → f(x)

• R3, DP (R3) and DPAC(R3) are AC-terminating, but R3 ∪ DP (R3) is not AC-
terminating.

R3 =







f(a) → f(b)
b → g(h(a, a), a)

h(x, x) → x
DP (R3) =







f(a) → f(b)
f(a) → b

b → h(a, a)
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Chapter 6

Conclusion

In this thesis, we have discussed the termination and the AC-termination property of
term rewriting systems. We summarize the main results in this thesis.

First, we extend the notion of dependency pairs to AC-TRSs. It is impossible to
directly apply the notion of dependency pairs to AC-TRSs. To avoid this difficulty,
we introduce the head parts in terms and show an analogy between the root positions
in infinite reduction sequences by TRSs and the head positions in those by AC-TRSs.
Indeed, this analogy is essential for extensions of dependency pairs to AC-TRSs. Based
on this analogy, we define AC-dependency pairs and AC-dependency chains.

Second, we extend argument filtering methods to AC-TRSs. Our extension gives a
design of a weak AC-reduction order and a weak AC-reduction pair from an arbitrary
AC-reduction order. Moreover, in order to strengthen the power of the argument filtering
method, we improve the method in two directions. One is the lexicographic argument
filtering method, in which argument filtering functions are lexicographically combined
to compare AC-dependency pairs. Another one is an extension over multisets. In the
argument filtering method on AC-TRSs, any argument filtering function must be com-
patible to AC-equations. We relax this restriction using the AC-multiset extension. These
methods are effective for proving not only AC-termination but also termination of TRSs.

Next, we propose a powerful algorithm for generating an approximated AC-dependency
graph, using the techniques of Ω-reduction and ΩV -reduction, which are introduced to
analyze decidable call-by-need computations in TRSs. Of course, our algorithm can also
apply to TRSs, because TRSs are AC-TRSs without AC-symbols.

On the other hand, the AC-dependency pair method is useful for not only proving AC-
termination but also analyzing other proving methods for AC-termination. We show that
the argument filtering method combined with the dependency pair technique can clearly
explain in a uniform framework why various elimination transformations work well.

Based on this observation, a new powerful elimination method, called the argument
filtering transformation, is proposed. Since the transformation is carefully designed by
removing all unnecessary rewrite rules generated by other elimination methods, it is the
most powerful among all elimination methods.

Finally, we make the relation clear among various elimination methods through com-
paring them with corresponding restricted argument filtering transformation. For ex-
ample, the dummy elimination method can be seen as a restricted argument filtering
transformation in which each argument filtering always removes all arguments, and the
distribution elimination method restricts each argument filtering into collapsing one.
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