
Higher-Order Path Orders based on Computability

KUSAKARI Keiichirou

Graduate School of Information Science, Nagoya University.
kusakari@is.nagoya-u.ac.jp

Abstract. Simply-typed term rewriting systems (STRSs) are an extension of term rewriting
systems. STRSs can be naturally handle higher order functions, which are widely used in
existing functional programming languages. In this paper we design recursive and lexicographic
path orders, which can efficiently prove the termination of STRSs. Moreover we discuss an
application to the dependency pair and the argument filtering methods, which are very effective
and efficient support methods for proving termination.

Keyword. Simply-Typed Term Rewriting System, Termination, Path Order, Computability,
Dependency Pair, Argument Filtering Method

1 Introduction

Term rewriting systems (TRSs) are computation
models. In TRSs, terms are reduced by using a
set of directed equations, called rewrite rules. The
most striking feature is that TRSs themselves can
be regarded as functional programming languages.
For example, the following TRS defines addition on
natural numbers represented by the constant 0 and
the successor function S:{

Add(x, 0) → x
Add(x, S(y)) → S(Add(x, y))

Unfortunately, TRSs cannot handle higher-order
functions. For example, the Map-function, which
is one of the most typical higher-order function in
functional programming languages, is defined as fol-
lows:

Map(f, Nil) → Nil
Map(f, Cons(x, xs))

→ Cons(f(x),Map(f, xs))

This system is a legal functional program, but an
illegal TRS: the variable f occurs at a non-leaf po-
sition in the right-hand side of the second rule. In
order to handle such the system above, we designed
simply-typed term rewriting systems (STRSs) in
which variable occurrences at non-leaf positions are
permitted [12].

Nipkow also introduced higher-order rewriting
systems (HRSs), which are rewriting systems on
algebraic λ-terms, using the λ-calculus as a meta-
language [13]. Intuitively, algebraic λ-terms are
simply-typed λ-terms in which occurrences of func-
tion symbols are permitted. For example, the Map-
function in HRSs is defined as follows:

map(λx.F (x), []) → []
map(λx.F (x), X :: Xs)

→ F (X) :: map(λx.F (x), Xs)

In order to prove the termination of TRSs, re-
cursive and lexicographic path orders are proposed
[5, 11], which is based on the notion of simplifi-
cation orders. These path orders are extended to
HRSs by Jouannaud and Rubio [7], and by Iwami
and Toyama [9, 10]. We also extend path orders to
STRSs [12]. All of these path orders are based on
the notion of simplification orders. Unfortunately,
these path orders have unnatural restrictions for
type or precedence.

On the other hand, in order to prove the termina-
tion of typed λ-calculus, the notion of computability
was introduced by Tait [18] and Girard [6]. Based
on computability instead of simplification orders,
Jouannaud and Rubio [8] and Raamsdonk [14] in-
troduced recursive path orders in HRSs.

In this paper, we design new recursive and lexico-
graphic path orders in STRSs based on the notion
of computability, and give an more refined proof.
Unlike path orders in [8, 14], our path orders are
reduction orders, that is, directly simulate reduc-
tion relations. This is a very advantage, because
our path orders can combine well with the depen-
dency pair and the argument filtering methods [12],
which are very effective and efficient support meth-
ods for proving termination.

2 Preliminaries

We assume that the reader is familiar with notions
of term rewriting systems [4].

For given binary relation >, the lexicographic ex-
tension >lex on lists is recursively defined as follows:

[a1, . . . , an] >lex [] if n > 0
[a1, . . . , an] >lex [a′

1, . . . , a
′
m] if a1 > a′

1

[a1, . . . , an] >lex [a′
1, . . . , a

′
m]

if a1 = a′
1 and [a2, . . . , an] >lex [a′

2, . . . , a
′
m]

1

A multiset on a set A is a set of elements of A in
which elements may have multiple occurrences. We
use standard set notation like {a, a, b}. It will be
obvious from the context if we refer to a set or a
multiset. For given binary relation >, multisets M
and N , we define M >mul N as ∀n ∈ N −M. ∃m ∈
M − N. m > n.

A signature F is a finite set of function symbols,
denoted by F, G, A set V is an enumerable set
of variable symbols, denoted by x, y, f, g, We
assume that F ∩ V = ∅. The set T (F ,V) of terms
is the smallest set such that a(t1, . . . , tn) ∈ T (F ,V)
whenever a ∈ F ∪ V and ti ∈ T (F ,V). In the
case of n = 0, we denote a instead of a(). For
s ≡ a(s1, . . . , sn), we often write s(t1, . . . , tm) in-
stead of a(s1, . . . , sn, t1, . . . , tm). Identity of terms
is denoted by ≡. We define root(a(t1, . . . , tn)) = a.
V ar(t) is the set of variables in t. The size |t| of a
term t is the number of function and variable sym-
bols in t.

A non-empty set of basic types is denoted by B.
The set S of simple types is generated from B by
the constructor → as S ::= B | (S → S). A simple
type (α1 → (· · · → (αn → α) · · ·)) is abbreviated to
α1 → · · · → αn → α.

A type attachment τ is a function from F∪V to S.
We assume that for each simple type α there exists a
variable x such that τ(x) = α. A term a(t1, . . . , tn)
has a simple type α if τ(a) = α1 → · · · → αn → α
and each ti has the simple type αi. A term t is said
to be a simply-typed term if it has a simple type α.
Then we denote τ(t) = α. The set of simply-typed
term with simple type α is denoted by Tα

τ (F ,V),
and the set of all simply-typed terms is denoted by
Tτ (F ,V).

A substitution is a mapping from variables to
terms. A substitution over terms is defined as
θ(a(t1, . . . , tn)) = a(θ(t1), . . . , θ(tn)) if a ∈ F ;
θ(a(t1, . . . , tn)) = a′(t′1, . . . , t

′
k, θ(t1), . . . , θ(tn)) if

a ∈ V with θ(a) = a′(t′1, . . . , t
′
k). We hereafter as-

sume that x and θ(x) have the same simple type for
each variable x. We write tθ instead of θ(t).

A context is a term which has the special symbol
¤, called hole. We hereafter assume that ¤ is of a
basic type. C[t] is the term obtained from C[] by
replacing ¤ with t.

A rewrite rule is a pair of terms, written by l →
r, such that root(l) ∈ F and V ar(l) ⊇ V ar(r).
A simply-typed term rewriting system (STRS) is a
finite set R of rules such that τ(l) = τ(r) ∈ B for
all l → r ∈ R. A reduction relation →

R
in STRS R

is defined as s→
R

t iff s ≡ C[lθ] and t ≡ C[rθ] for

some rule l → r ∈ R, context C[] and substitution
θ. For example, the Map-function is defined as the

following STRS:

Map(f,Nil) → Nil
Map(f, Cons(x, xs))

→ Cons(f(x),Map(f, xs))

In the system, we have the following reduction re-
lation sequence.

Map(S,Cons(S(0), Cons(0, Nil)))

→
R

Cons(S(S(0)), Map(S, Cons(0, Nil)))

→
R

Cons(S(S(0)), Cons(S(0),Map(S, Nil)))

→
R

Cons(S(S(0)), Cons(S(0), Nil))

A STRS R is terminating if there exists no infinite
reduction sequence. We often omit the subscript R

whenever no confusion arises.
Suppose that T ⊆ T (F ,V) and À is a binary

relation on T . À is said to be monotonic in T if
s À t ⇒ C[s] À C[t] for all s, t, C[s], C[t] ∈ T , and
said to be stable in T if s À t ⇒ sθ À tθ for all
s, t, sθ, tθ ∈ T . À is said to be well-founded in T if
there exists no infinite decreasing sequence of À in
T . A term t is said to be terminating with respect to
À in T if there exists no infinite decreasing sequence
of À in T starting from t.

Definition 2.1 Suppose that T ⊆ T (F ,V) and À
is a binary relation on T . A binary relation À is
said to be a reduction order in T if À is monotonic,
stable and well-founded in T .

Proposition 2.2 [12] Let R be a STRS. Then R
is terminating iff there exist T ⊆ T (F ,V) and a
reduction strict order > in T satisfying Tτ (F ,V) ⊆
T and l > r for all l → r ∈ R.

We do not assume that a reduction order is a
strict order, that is, transitive and irreflexive, be-
cause path orders designed in this paper are not
transitive. However it is no problem for proving
termination, because >+ is a reduction strict or-
der if > is a reduction order. Hence we obtain the
following theorem from the proposition above.

Theorem 2.3 Let R be a STRS. Then R is termi-
nating iff there exist T ⊆ T (F ,V) and a reduction
order > in T satisfying Tτ (F ,V) ⊆ T and l > r for
all l → r ∈ R.

Keep in mind that we distinguish the notions of
reduction order and reduction strict order in this
paper.

Finally, we introduce the notion of well-formed
terms, which is mainly used throughout the paper.

2

Definition 2.4 Suppose that B is a set of basic
types, and τ is a type attachment. We introduce
a special basic type ∗, which represent any basic
type. We define a function skel as skel(α) = ∗ if
α ∈ B; skel(α → β) = skel(α) → skel(β). We
define a type attachment τ0 as τ0(α) = skel(τ(α)).
The embedding relation v on skeletons is defined
as follows:

• ∗ v ∗

• α′
1 → α′

2 v α1 → α2 if α′
i v αi (i = 1, 2)

• αi v α1 → α2 for i = 1, 2.

A term a(t1, . . . , tn) is said to be well-formed with
skeleton α if τ0(a) = α1 → · · ·αn → α and for each
i, there exists α′

i such that ti is well-formed with α′
i

and α′
i v αi. We denote by Tv,α

τ (F ,V) the set of all
well-formed terms with skeleton α. We also denote
wftypeτ (t) = α if t ∈ Tv,α

τ (F ,V), and denote by
Tv

τ (F ,V) the set of all well-formed terms.

We notice that any simply-typed term is a well-
formed term, that is, Tτ (F ,V) ⊆ Tv

τ (F ,V), but
the equality does not hold in general. For ex-
ample, letting τ(0) = Nat, τ(Nil) = NatList
and τ(Map) = (Nat → Nat) → NatList →
NatList. Then S(Nil), Map(0, Nil) ∈ Tv

τ (F ,V),
but S(Nil), Map(0, Nil) 6∈ Tτ (F ,V).

3 Computability

In order to prove the termination of typed λ-
calculus, the notion of computability was intro-
duced by Tait [18] and Girard [6]. In the following
sections, we will make use of the notion to prove
the well-foundedness of path orders. This approach
is also used in [8, 14].

Intuitivity, the notion of computability corre-
sponds to termination as function. For instance,
considering STRS R = {F (0) → F (0)}. Then the
term F (0) is not terminating, but the term F is
terminating. We often call F non-terminating func-
tion. The notion of computability handles this view
point, i.e., the term F is terminating but not com-
putable.

A notion of computability is inductively defined
on types with respect to the embedding relation v
as follows:

Definition 3.1 Let α = α1 → · · · → αn → ∗. A
well-formed term t ∈ Tv,α

τ (F ,V) is said to be com-
putable with respect to À if t(t1, . . . , tn) is termi-
nating with respect to À for all computable terms
ti (i = 1, . . . , n) such that wftypeτ (ti) v αi.

Definition 3.2 Let À be a binary relation on well-
formed terms Tv

τ (F ,V). À is said to be a subject
relation if s À t ⇒ wftypeτ (s) = wftypeτ (t). À
has the supplement property if s À t ⇒ s(u) À
t(u) for any well-formed terms s, t and u such that
s(u) and t(u) are well-formed.

Also not only approaches in [18, 6] but ones in
[8, 14], four properties in the following lemma hold
the key to computable approaches. Hence subject
and supplement properties are essential in com-
putable approaches so that clearly from the follow-
ing lemma.

Lemma 3.3 Let À be a subject relation on
Tv

τ (F ,V) with the supplement property. Then the
following properties with respect to À hold.

(1) If there exists at least one computable well-
formed term u with wftypeτ (u) = ∗, then any
computable well-formed term is terminating.

(2) If s is computable and s À t then t is com-
putable.

(3) If wftypeτ (s) = ∗ and t is computable for any
t with s À t, then s is computable.

(4) Let t(t1, . . . , tn) ∈ Tv,α
τ (F ,V). If t and each

ti are computable then t(t1, . . . , tn) is com-
putable.

Proof

(1) Let t ∈ Tv,α
τ (F ,V) be a computable term

with α = α1 → · · · → αn → ∗. Assume
that there exists an infinite decreasing sequence
t ≡ t0 À t1 À · · ·. Since À is a subject re-
lation, wftypeτ (ti) = α for each i. Thanks
to the assumption, letting u be a computable
term with wftypeτ (u) = ∗. From the defini-
tion, ∗ v αi for each i, hence each tj(u, . . . , u)
is well-formed with wftypeτ (tj(u, . . . , u)) = ∗.
It follows from the supplement property that
t0(u, . . . , u) À t1(u, . . . , u) À · · ·. It is a con-
tradiction with the computability of t.

(2) Assume that t ∈ Tv,α
τ (F ,V) is not com-

putable, where α = α1 → · · · → αn → ∗.
Then there exist computable terms ui with
wftypeτ (ui) v αi (i = 1, . . . , n) such that
t(u1, . . . , un) is not terminating. Since À is
a subject relation, wftypeτ (s) = α and hence
wftypeτ (s(u1, . . . , un)) = ∗. From the supple-
ment property, s(u1, . . . , un) À t(u1, . . . , un).
Thus s(u1, . . . , un) is not terminating. It is a
contradiction with the computability of s.

3

(3) Assume that s is not computable, that is, not
terminating. Then there exists an infinite de-
creasing sequence s À t1 À t2 À · · ·. From
the assumption, t1 is computable. Since À is
a subject relation, wftypeτ (t1) = ∗. Hence t1
is terminating. It is a contradiction.

(4) Let α = α1 → · · · → αm → ∗. Assume that
t(t1, . . . , tn) is not computable. Then there ex-
ist computable well-formed terms ui for each i
such that t(t1, . . . , tn, u1, . . . , um) ∈ Tv,∗

τ (F ,V)
is not terminating. It is a contradiction with
the computability of t. ¤

4 Recursive Path Order

In the previous section we have seen that the sub-
ject and the supplement properties are essential in
computable approaches. Based on this viewpoint,
we design a recursive path order by giving the sub-
ject and the supplement properties to original one
[5].

Definition 4.1 (Recursive Path Order)
A precedence B is a strict order on F .

For well-formed terms s ≡ a(s1, . . . , sn) and t ≡
a′(t1, . . . , tm), we have s >rpo t if wftypeτ (s) =
wftypeτ (t) and satisfying one of the following rules:

(RPO1) wftypeτ (s) = ∗, a B a′, and
for all j, either s >rpo tj or ∃i. si ≥rpo tj ,

(RPO2) a = a′ and {s1, . . . , sn} >mul
rpo

{t1, . . . , tm}, or

(RPO3) there exists a number k such that
∃i. si ≥rpo a′(t1, . . . , tk) and ∀j >
k. ∃ij . sij ≥rpo tj ,

where ≥rpo is defined as >rpo ∪ ≡.

In the definition above, the restriction
wftypeτ (s) = wftypeτ (t) guarantees that >rpo is
a subject relation, and the rule (RPO3) and the
restriction wftypeτ (s) = ∗ in (RPO1) give >rpo

the supplement property.

Lemma 4.2 >rpo is a subject relation.

Proof Trivial. ¤

The subject property is essential for designing
>rpo. For example, letting F B G, τ(F) = α →
α → α and τ(G) = (α → α) → α → α. If we omit
the restriction wftypeτ (s) = wftypeτ (t) whenever
s >rpo t, then we obtain F (x, y) >rpo G(F (x), y) by
(RPO1), and G(F (x), y) >rpo F (x, y) by (RPO3).

Lemma 4.3 >rpo has the supplement property.

Proof Let s ≡ a(s1, . . . , sn) >rpo a′(t1, . . . , tm) ≡
t, wftypeτ (s) = α → β and u ∈ Tv,α′

τ (F ,V) for
some α′ v α. We prove that s(u) >rpo t(u) by in-
duction on the definition of >rpo. According to the
rule applied to s >rpo t, we distinguish the following
cases:

RPO1: This is not the case, because wftypeτ (s) 6=
∗.

RPO2: Then {s1, . . . , sn} >mul
rpo {t1, . . . , tm}.

Since {s1, . . . , sn, u} >mul
rpo {t1, . . . , tm, u}, we

have s(u) >rpo t(u) by (RPO2).

RPO3: Then there exists a number k such
that ∃i. si ≥rpo a′(t1, . . . , tk) and ∀j >
k. ∃ij . sij ≥rpo tj . We have also s(u) ≡
a(s1, . . . , sn, u) >rpo a′(t1, . . . , tm, u) ≡ t(u) by
(RPO3), because of u ≥rpo u. ¤

Thanks to the subject and the supplement prop-
erties, we can obtain the following key lemma cor-
respond to Lemma 3.3.

Lemma 4.4 In well-formed terms, the following
properties with respect to >rpo hold.

(1) Any computable well-formed term is terminat-
ing.

(2) If s is computable and s >rpo t then t is com-
putable.

(3) If wftypeτ (s) = ∗ and t is computable for any
t with s >rpo t, then s is computable.

(4) Let t(t1, . . . , tn) ∈ Tv
τ (F ,V). If t and each

ti are computable then t(t1, . . . , tn) is com-
putable.

Proof From Lemmata 4.2 and 4.3, >rpo has the
subject and the supplement properties. We recall
that we assume the existence of a basic-typed vari-
able x, i.e., wftypeτ (x) = ∗. From the definition of
>rpo, the variable is minimal with respect to >rpo.
Therefore this lemma follows from Lemma 3.3. ¤

By using four properties above, we prove the well-
foundedness of >rpo on well-formed terms by prov-
ing that any well-formed term is computable. The
proof is constructed by the following two lemmata.
We note that the following lemma makes use of in-
duction on a triple as in [8].

Lemma 4.5 Let s ≡ a(s1, . . . , sn) >rpo

a′(t1, . . . , tm) ≡ t such that wftypeτ (s) = ∗.
If any si is computable with respect to >rpo, then
so is t.

4

Proof The proof proceeds by induction on triples
(a, {s1, . . . , sn}, |t|) with respect to the order À de-
fined as the lexicographic combination of B, >mul

rpo

and the usual strict order over natural numbers.
We notice that >mul

rpo is well-founded on multisets
of computable terms, because of Lemma 4.4 (1).

According to the rule applied to s >rpo t, we
distinguish the following cases:

RPO1: We first prove that any tj is com-
putable. In the case of si ≥rpo tj , tj is
computable by Lemma 4.4 (2). In the case
of s >rpo tj , tj is computable by the induc-
tion hypothesis, because (a, {s1, . . . , sn}, |t|) À
(a, {s1, . . . , sn}, |tj |). Hence any tj is com-
putable.

From Lemma 4.2, wftypeτ (t) = wftypeτ (s) =
∗. Thanks to Lemma 4.4 (3) and wftypeτ (t) =
∗, it suffices to show that any u is computable
whenever t >rpo u. It follows from the induc-
tion hypothesis, because (a, {s1, . . . , sn}, |t|) À
(a′, {t1, . . . , tm}, |u|).

RPO2: Since {s1, . . . , sn} >mul
rpo {t1, . . . , tm}, for

any tj there exists si such that si ≥rpo tj . From
Lemma 4.4 (2), any tj is computable.

As in the case (RPO1), it suffices to show that
any u is computable whenever t >rpo u. It
follows from the induction hypothesis, because
(a, {s1, . . . , sn}, |t|) À (a′, {t1, . . . , tm}, |u|).

RPO3: Suppose that si ≥rpo a′(t1, . . . , tk) and
sij ≥rpo tj for all j > k. From Lemma
4.4 (2), a′(t1, . . . , tk) and each tj (j > k)
are computable. From Lemma 4.4 (4), t ≡
a′(t1, . . . , tk, tk+1, . . . , tm) is computable. ¤

Lemma 4.6 >rpo is well-founded in well-formed
terms Tv

τ (F ,V).

Proof By Lemma 4.4 (1), any computable term
is terminating in well-formed terms. Hence, it suf-
fices to show that any well-formed term t is com-
putable with respect to >rpo. The proof proceeds
by induction on |t|. Let t ≡ a(t1, . . . , tm) and
wftypeτ (t) = α1 → · · · → αn → ∗.

Any ti is computable by the induction hy-
pothesis. Assume that t is not computable.
Then there exist computable terms ui such that
t(u1, . . . , un) is a non-terminating well-formed
term. Let v be an arbitrary term such that
a(t1, . . . , tm, u1, . . . , un) >rpo v. From Lemma
4.5, v is computable. Hence t(u1, . . . , un) is com-
putable by Lemma 4.4 (3). From the definition,
t(u1, . . . , un) is terminating. It is a contradiction.

¤

In order to prove that >rpo is a reduction order,
the monotonicity and the stability are shown only
remains. These properties guarantees that >rpo can
simulate the reduction relation, i.e., s→

R
t ⇒ s >rpo

t if l >rpo r for all l → r ∈ R.

Lemma 4.7 >rpo is monotonic in Tv
τ (F ,V).

Proof Let s >rpo t. It is trivial that
wftypeτ (C[s]) = wftypeτ (C[t]) for any context
C[]. We prove C[s] >rpo C[t] by structural in-
duction on C[]. The case of C[] ≡ ¤ is triv-
ial. Suppose that C[] ≡ a(. . . , C ′[], . . .). From
the induction hypothesis, C ′[s] >rpo C ′[t]. Hence
{. . . , C ′[s], . . .} >mul

rpo {. . . , C ′[t], . . .}. We obtain
C[s] >rpo C[t] by (RPO2). ¤

In the proof above, we use the fact that ¤ is of a
basic type.

Lemma 4.8 >rpo is stable in Tv
τ (F ,V).

Proof Let s ≡ a(s1, . . . , sn) >rpo a′(t1, . . . , tm) ≡
t. It is trivial that wftypeτ (sθ) = wftypeτ (tθ) for
any substitution θ. We prove sθ >rpo tθ by induc-
tion on |s| + |t|. According to the rule applied to
s >rpo t, we distinguish the following cases:

RPO1: From the induction hypothesis, for all j
either sθ >rpo tjθ or ∃i. siθ ≥rpo tjθ. Hence
we obtain sθ >rpo tθ by (RPO1).

RPO2: Let aθ = a′′(~ui). From the
induction hypothesis, {s1θ, . . . , snθ} >mul

rpo

{t1θ, . . . , tmθ}. Hence {~ui, s1θ, . . . , snθ} >mul
rpo

{~ui, t1θ, . . . , tmθ}. Since root(sθ) = a′′ =
root(tθ), we obtain sθ >rpo tθ by (RPO2).

RPO3: Suppose that ∃i. si ≥rpo a′(t1, . . . , tk)
and ∀j > k. ∃ij . sij ≥rpo tj for
some k. From the induction hypothe-
sis, siθ ≥rpo a′(t1, . . . , tk)θ and sij θ ≥rpo

tjθ. Hence sθ ≡ a′′(~ui, s1θ, . . . , snθ)
>rpo (a′(t1, . . . , tk)θ)(tk+1θ, . . . , tmθ) ≡ tθ by
(RPO3), where aθ = a′′(~ui). ¤

Theorem 4.9 >rpo is a reduction order in well-
formed terms Tv

τ (F ,V).

Proof From Lemmata 4.6, 4.7 and 4.8. ¤

Corollary 4.10 >rpo is a reduction order and >+
rpo

is a reduction strict order in simply-typed terms
Tτ (F ,V).

We notice that >rpo is not transitive. For ex-
ample, letting G B F , τ(F) = τ(G) = (α →
α) → α → α, τ(f) = α → α and τ(x) = α,

5

then F (G(f), x) >rpo G(f, x) >rpo F (f, f(x)) but
F (G(f), x) 6>rpo F (f, f(x)).

Note that the transitivity is unnecessary for prov-
ing termination (refer to Theorem 2.3).

Example 4.11 Let R1 be the following STRS

{
Map(f,Nil) → Nil

Map(f, C(x, xs)) → C(f(x),Map(f, xs))

We define the precedence by Map B C. Then
Map(f, C(x, xs)) >rpo f(x) by (RPO3), and
Map(f, C(x, xs)) >rpo Map(f, xs) by (RPO2).
Thus Map(f, C(x, xs)) >rpo C(f(x),Map(f, xs))
by (RPO1). We have also Map(f,Nil) >rpo Nil
by (RPO3). Hence R1 is terminating.

5 Lexicographic Path Order

We also design a lexicographic path order by giv-
ing the subject and the supplement properties to
original one [11].

Definition 5.1 (Lexicographic Path Order)
A precedence B is a strict order on F .

For well-formed terms s ≡ a(s1, . . . , sn) and
t ≡ a′(t1, . . . , tm), we have s >lpo t if wftypeτ (s) =
wftypeτ (t) and satisfying one of the following rules:

(LPO1) wftypeτ (s) = ∗, a B a′, and
for all j, either s >lpo tj or ∃i. si ≥lpo tj ,

(LPO2) a = a′, [s1, . . . , sn] >lex
lpo [t1, . . . , tm], and

for all j, either s >lpo tj or ∃i. si ≥lpo tj , or

(LPO3) there exists a number k such that
∃i. si ≥lpo a′(t1, . . . , tk) and ∀j > k. ∃ij . sij ≥lpo

tj ,

where ≥lpo is defined as >lpo ∪ ≡.

Theorem 5.2 >lpo is a reduction order in well-
formed terms Tv

τ (F ,V).

We omit the proof, because all proofs are essen-
tially similar as proofs of the recursive path order.

Corollary 5.3 >lpo is a reduction order and >+
lpo

is a reduction strict order in simply-typed terms
Tτ (F ,V).

By using >lpo, we can also prove the termination
of STRS R1 in Example 4.11.

6 Dependency Pair and Argu-
ment Filtering Methods

The notion of dependency pairs in first-order TRSs
was introduced by Arts and Giesl [1, 2, 3]. The no-
tion was extended to higher-order systems by Sakai,
Watanabe and Sakabe [15], and by Kusakari [12]. In
the dependency pair method, weak reduction orders
play an important role instead of reduction orders.
To design weak reduction orders, Arts and Giesl
introduced the argument filtering method, which
is designed by eliminating unnecessary subterms
[3]. After that the method was extended to STRSs
by Kusakari [12]. First we introduce some results
for the dependency pair and the argument filtering
methods in STRSs [12].

Definition 6.1 The set DF (R) of defined symbols
in R is defined as {root(l) | l → r ∈ R}. F# =
{F# | F ∈ F} is a set of marked symbols disjoint
from F ∪ V. We define the root-marked term by
(F (t1, . . . , tn))# = F#(t1, . . . , tn). If root(t) ∈ V
then we identify t# with t. A pair 〈u#, v#〉 of terms
is a dependency pair of STRS R if there exists a rule
u → C[v] ∈ R such that root(v) ∈ DF (R) ∪ V, v is
of a basic type, and v itself is not a variable. We
denote by DP (R) the set of dependency pairs of R.

Definition 6.2 We define that a term l is said
to be a pattern if any variable occurrences in l
is at a leaf position, that is, n = 0 whenever
l ≡ C[x(u1, . . . , un)] and x ∈ V. A STRS R is
said to be a pattern STRS if the left-hand side l for
any rule l → r in R is a pattern, and a binary re-
lation À over terms is said to be stable for pattern
if l À r ⇒ lθ À rθ for any l and r such that l is a
pattern.

In the following, we consider pattern STRSs, be-
cause the argument filtering method in [12] requires
the restriction by pattern.

Definition 6.3 A pair (&, >) of binary relations
on Tτ (F ,V) is said to be a reduction pair for pattern
STRSs if it satisfies the following conditions:

• & is monotonic and stable for pattern,

• > is well-founded and stable for pattern,

• & · > ⊆ > or > · &⊆ >,

• & satisfies the marked condition for DF (R)1

(v & v# if root(v) ∈ DF (R) and τ(v) ∈ B).

1This condition is slightly modified from the condition in
[12].

6

Specially, a binary relation & is said to be a weak
reduction order for pattern STRSs if (&, >) is a
reduction pair for pattern STRSs, where > is the
strict part of &.

Proposition 6.4 [12] Let R be a pattern STRS
and (&, >) be a reduction pair for pattern STRSs.
If R ⊆ & and DP (R) ⊆ > then R is terminating.

Definition 6.5 An argument filtering function is
a function π such that for any F ∈ F , π(F) is a
list of positive integers [i1, . . . , ik] with i1 < · · · <
ik ≤ n, where τ(F) = α1 → · · ·αn → β and β ∈ B.
π(F)≤n denotes the maximal sub-list [i1, . . . , im] of
π(F) such that im ≤ n. We can naturally extend π
over terms as follows:

π(a(t1, . . . , tn)) = a(π(t1), . . . , π(tn))
if a ∈ V

π(a(t1, . . . , tn)) = a(π(ti1), . . . , π(tim))
if a ∈ F and π(a)≤n = [i1, . . . , im]

For given argument filtering function π and binary
relation >, we define s &π t by π(s) ≥ π(t). We
hereafter assume that if π(F) is not defined ex-
plicitly then it is intended to be [1, . . . , n], where
τ(F) = α1 → · · ·αn → β and β ∈ B.

We notice that for each >∈ {>rpo, >lpo} the
strict part >π of &π can be directly defined as
s >π t ⇐⇒ π(s) > π(t), because > is irreflex-
ive, which follows from the well-foundedness.

Proposition 6.6 [12] Let > be a reduction order
in T (F ,V). If > has the deletion property2 and &π

satisfies the marked condition for DF (R), then &π

is a weak reduction order for pattern STRSs.

Unlike path orders in [12], definitions of path or-
ders in this paper dependent on type attachment.
Hence we introduce a type attachment τπ after ar-
gument filtering.

Definition 6.7 For each type attachment τ , we de-
fine τπ as τπ(x) = τ(x) for all x ∈ V; τπ(F) =
αi1 → · · ·αik

→ β if π(F) = [i1, . . . , ik] and
τ(F) = α1 → · · ·αn → β with β ∈ B.

Lemma 6.8 If t ∈ Tα
τ (F ,V) then π(t) ∈

Tv,α′

τπ (F ,V) for some α′ v α.

Proof The proof proceeds by induction on |t|. Let
t ≡ a(t1, . . . , tn) ∈ Tα

τ (F ,V), τ(a) = α1 → · · · →
αn → α and α = αn+1 → · · · → αm → β with
β ∈ B.

2In [12], this condition is missing for Corollary 7.7, how-
ever it is required in Theorem 6.8, on which the corollary is
based. In fact, the deletion property is necessary to guaran-
tee the stability for pattern.

From the induction hypothesis, for each i ≤ n,
there exists α′

i such that π(ti) ∈ T
v,α′

i
τπ (F ,V) and

α′
i v αi. In the case of a ∈ V, it is trivial that π(t) =

a(π(t1), . . . , π(tn)) ∈ Tv,α

τπ (F ,V). Suppose that
a ∈ F , π(a) = [i1, . . . , il] and π(a)≤n = [i1, . . . , ik].
Then π(t) = a(π(ti1), . . . , π(tik

)). Hence π(t) ∈
Tv,γ

τπ (F ,V) and γ = αik+1 → · · · → αil
→ β. Since

γ v αn+1 → · · · → αm → β = α, the claim holds.
¤

Unfortunately, our recursive and lexicographic
path orders do not have the deletion property,
because a(. . . , u, . . .) and a(. . . , . . .) have different
type even if both terms are well-formed.

On the other hand, the deletion property and the
restriction by pattern are required only for stability.
Hence, combining with Lemma 6.8 and Proposition
6.4, we are able to reformulate Proposition 6.6.

Theorem 6.9 Let R be a STRS and > be a reduc-
tion order on Tv

τπ (F ,V). Suppose that the following
properties hold:

• &π has the marked condition for DF (R),
i.e., v & v# if root(v) ∈ DF (R) and τ(v) ∈ B.

• &π are stable for R,
i.e., for all l → r ∈ R, l &π r ⇒ lθ &π rθ.

• >π are stable for DP (R),
i.e., for all 〈u, v〉 ∈ DP (R), u >π v ⇒ uθ >π

vθ.

If R ⊆ & and DP (R) ⊆ > then R is terminating.

In this paper, we have the general assumption
τ(x) = τ(θ(x)) for each x, however this does not
guarantee wftypeτπ (π(t)) = wftypeτπ (π(tθ)).

Lemma 6.10

• wftypeτπ (π(t)) = wftypeτπ (π(tθ))
if root(t) ∈ F

• wftypeτπ (π(t)) w wftypeτπ (π(tθ))
if root(t) ∈ V

Proof It is a directly consequence from definitions
of wftype and π over terms. ¤

In general, wftypeτπ (π(t)) = wftypeτπ (π(tθ))
does not hold. For example, letting t = f(H),
θ(f) = F , τ(f) = τ(F) = (α → α) → α →
α, τ(H) = α → α and π(F) = [1], then
wftypeτπ (π(t)) = ∗ → ∗ and wftypeτπ (π(tθ)) =
wftypeτπ (F (H)) = ∗. This problem destroys the
stability, because f(H) >π

rpo H but F (H) 6>π
rpo H.

Hence we need a suitable restriction.

7

Lemma 6.11 Let π be an argument filtering func-
tion and R be a STRS satisfying the following con-
dition:

(P) Let l → r ∈ R, π(l) ≡ a(π(l1), . . . , π(ln)) and
x ∈ V ar(π(l)). If τ(x) 6∈ B then for each i
either x ≡ li or x 6∈ V ar(π(li)).

Then >π
rpo, &π

rpo, >π
lpo and &π

lpo are stable for R ∪
DP (R).

Proof It is easily shown by induction on s that
π(sθ) ≡ π(tθ) for any s and t such that π(s) ≡
π(t). Hence it suffices to show the case of >π

rpo and
>π

lpo. Moreover we omit the case of >π
lpo, because

the proof is essentially similar as proof of the case
>π

rpo.
Let 〈u, v〉 ∈ R ∪ DP (R), s ≡ a(s1, . . . , sn),

t ≡ a′(t1, . . . , tm), π(s) ≡ a(π(si1), . . . , π(sin′))
and π(t) ≡ a′(π(tj1), . . . , π(tjm′)). Suppose that
π(u) >rpo π(v) and π(s) >rpo π(t) is a sub-proof
of π(u) >rpo π(v). We prove π(sθ) >rpo π(tθ) by
induction on |s| + |t|.

In the case of a, a′ ∈ F , thanks to Lemma 6.10,
π(sθ) >rpo π(tθ) can be proved as similar to Lemma
4.8.

In the case of a ∈ V, π(s) ≡ a >rpo π(t) from the
condition (P). It is a contradiction.

Suppose that a ∈ F and a′ ∈ V. Then (RPO3) is
only applicable to π(s) >rpo π(t). Let k be a num-
ber such that ∃ip. π(sip) ≥rpo a′(π(ti1), . . . , π(tik

))
and ∀jq > ik. ∃ijq . π(sijq

) ≥rpo π(tjq). In the case
of τ(a′) ∈ B, π(sθ) >rpo π(tθ) ≡ π(a′θ) is trivially
holds. Suppose that τ(a′) 6∈ B. From the condi-
tion (P), π(s) ≡ π(u), sip = a′ and k = 0. Hence
π(sipθ) ≡ π(a′θ). From the induction hypothe-
sis, π(sijq

θ) ≥rpo π(tjqθ). Since wftypeπτ (π(u))
= wftypeπτ (π(s)) = wftypeπτ (π(t)) = ∗, we have
wftypeπτ (π(sθ)) = wftypeπτ (π(tθ)) = ∗ by Lemma
6.10. Therefore we obtain π(sθ) >rpo π(tθ) by
(RPO3). ¤

Finally, we present an effective and efficient meth-
ods for proving termination. In general, &π

rpo and
&π

lpo does not satisfy the marked condition. Hence
we need a suitable restriction for precedence.

Theorem 6.12 Let π be an argument filtering
function and R be a STRS satisfying the following
condition:

(M) for any F ∈ DF (R), either F# is identified to
F or F B F# and π(F) ⊇ π(F#).

(P) Let l → r ∈ R, π(l) ≡ a(π(l1), . . . , π(ln)) and
x ∈ V ar(π(l)). If τ(x) 6∈ B then for each i
either x ≡ li or x 6∈ V ar(π(li)).

For each >∈ {>rpo, >lpo}, if R ⊆ &π and DP (R) ⊆
>π then R is terminating.

Proof Thanks to Theorem 6.9 and Lemma 6.11,
it suffices to show that the condition (M) guar-
antees the marked condition for DF (R). Let
v ≡ a(v1, . . . , vn) be a well-formed term such that
a ∈ DF (R) and τ(v) ∈ B. Since wftypeτ (v) =
wftypeτ (v#) = ∗, it follows from Lemma 6.8 that
wftypeτπ (π(v)) = wftypeτπ (π(v#)) = ∗. Hence
π(v) ≥rpo π(v#) and π(v) ≥lpo π(v#). ¤

Example 6.13 Let τ(F) = (α → α) → α → α,
τ(G) = τ(f) = α → α and τ(x) = α. We define
STRS R2 as follows:

R2 = {F (f, F (G, x)) → F (f,G(f(F (G, x))))}

Then there exist three dependency pairs:

〈F#(f, F (G, x)), F#(f,G(f(F (G, x))))〉
〈F#(f, F (G, x)), f(F (G, x))〉
〈F#(f, F (G, x)), F#(G, x)〉

Suppose that π(G) = [] and F# is identified to F .
Then for the rule

π(F (f, F (G, x))) ≡ F (f, F (G, x))
>rpo F (f, G)
≡ π(F (f, G(f(F (G, x)))))

and for all dependency pairs

π(F#(f, F (G, x))) ≡ F#(f, F (G, x))
>rpo F#(f, G)
≡ π(F#(f,G(f(F (G, x)))))

π(F#(f, F (G, x))) ≡ F#(f, F (G, x))
>rpo f(F (G, x))
≡ π(f(F (G, x)))

π(F#(f, F (G, x))) ≡ F#(f, F (G, x))
>rpo F#(G, x)
≡ π(F#(G, x))

Therefore R2 is terminating.

Example 6.14 Let R3 be the following STRS:

Add(x, 0) → x
Add(x, S(y)) → S(Add(x, y))

Sub(x, 0) → x
Sub(0, y) → 0

Sub(S(x), S(y)) → Sub(x, y)
G(0, y) → y

G(S(x), y) → 0
Div(0, S(y)) → 0

Div(S(x), S(y))
→ G(Sub(y, x), S(Div(Sub(x, y), S(y))))

Len(Nil) → 0
Len(C(x, xs)) → S(Len(xs))

Sum(Nil) → 0
Sum(C(x, xs)) → Add(x, Sum(xs))

Map(f, Nil) → Nil
Map(f, C(x, xs)) → C(f(x),Map(f, xs))

F (f, xs)
→ Div(Sum(Map(f, xs)), Len(xs))

8

We suppose that B = {Nat, NatList, Bool}, The
function symbol Map has the type (Nat →
Nat) → NatList → NatList, and other sym-
bols have usual types. We notice that the nor-
mal form of F (f, [x1, . . . , xn]) by R3 correspond to
f(x1)+···+f(xn)

n . Then there exist 15 dependency
pairs:

〈Add#(x, S(y)), Add#(x, y)〉
〈Sub#(S(x), S(y)), Sub#(x, y)〉
〈Div#(S(x), S(y)),

G#(Sub(y, x), S(Div(Sub(x, y), S(y))))〉
〈Div#(S(x), S(y)), Sub#(y, x)〉
〈Div#(S(x), S(y)), Div#(Sub(x, y), S(y))〉
〈Div#(S(x), S(y)), Sub#(x, y)〉
〈Len#(C(x, xs)), Len#(xs)〉
〈Sum#(C(x, xs)), Add#(x, Sum(xs))〉
〈Sum#(C(x, xs)), Sum#(xs)〉
〈Map#(f, C(x, xs)), f(x)〉
〈Map#(f, C(x, xs)),Map#(f, xs)〉
〈F#(f, xs), Div#(Sum(Map(f, xs)), Len(xs))〉
〈F#(f, xs), Sum#(Map(f, xs))〉
〈F#(f, xs), Map#(f, xs)〉
〈F#(f, xs), Len#(xs)〉

We suppose that H# is identified to H for all
H ∈ F . We define the argument filtering func-
tion π by π(Sub) = [1], and define the precedence
B by Add B S B 0, Div B G, Div B S B Sub,
Len B S, Sum B Add, Map B C and F B D for
any D ∈ {Div, Sum, Map, Len}. Then it is routine
to check that π(l) ≥rpo π(r) for all l → r ∈ R3

and π(u#) >rpo π(v#) for all 〈u#, v#〉 ∈ DP (R3).
Therefore R3 is terminating.

Note that above STRSs R2 and R3 are not sim-
ply terminating, which is a difficult class for proving
termination. In fact, not only path orders in [8, 14]
but also our path orders cannot prove the termi-
nation of R2 and R3. When we try to prove the
termination of non-simply terminating STRSs, the
argument filtering method is very effective. More-
over R3 cannot be proved by methods in [12], which
has combined path orders with dependency and ar-
gument filtering methods, because path orders in
[12] requires Map is greatest with respect to B in
order to orient rules for Map, however the require-
ment destroys orientation for the last rule.

7 Concluding Remarks

A reader may think that the supplement prop-
erty can be given by adding the rule (s >rpo

t ⇒ s(u) >rpo t(u)) to original one [5], that is,
for well-formed terms s ≡ a(s1, . . . , sn) and t ≡
a′(t1, . . . , tm), we define s >rpo t if wftypeτ (s) =
wftypeτ (t) and satisfying one of the following rules:

(RPO’1) a B a′, and for all j, either s >rpo tj or
∃i. si ≥rpo tj ,

(RPO’2) a = a′ and {s1, . . . , sn} >mul
rpo

{t1, . . . , tm},

(RPO’3) ∃i. si ≥rpo t, or

(RPO’4) a(s1, . . . , sn−1) >rpo a′(t1, . . . , tm−1) and
sn ≥rpo tm.

We feel that the definition is correspond to ones in
[8, 14]. However this definition is out of the frame-
work in this paper, specifically, destroys the proof
of Lemma 4.5. It is the reason why terms with func-
tional type (ex. Add, Add(0)) are not accepted in
the framework in [14], although they are accepted
in STRSs. Note that terms Add and Add(0) are
represented by λxy.Add(x, y) and λy.Add(0, y) in
[8, 14]. We overcome the problem by adding the
restriction wftypeτ (s) = ∗ in (RPO1).

Unlike path orders in [14], our path orders can
combine well with the dependency pair and the ar-
gument filtering methods. In fact, the recursive
path order in [14] guarantees that l >rpo d ³β r
⇒ ∃u. lσ↓>rpo u ³β rσ↓. So we must delicately
analyze relations between the premise and the con-
sequence after argument filtering, in order to gener-
ate weak reduction orders by the argument filtering
method. We feel that it is not so easy.

As a model of functional programs, the polymor-
phic types is more useful than simple types. It
is easy to define polymorphic term rewriting sys-
tems (PTRSs) by using polymorphic types instead
of simple types. Then we should change the def-
inition of reduction relation. For example, letting
PTRS R = {I(x) → x, App(f, x) → f(x)}. In the
system, we have

I(f, x) ← App(I(f), x) → App(f, x) → f(x).

Hence R is not confluent, which is too restrictive as
model. In order to reduce I(f, x) to f(x) we need
to apply the first rule in the suffix context ¤(x)
which has the hole at the root position. Hence,
in [12], we define the reduction relation as s→

R
t iff

s ≡ C[S[lθ]] and t ≡ C[S[rθ]], where S[] is a suf-
fix context. Fortunately, our path orders are closed
to suffix contexts, that is, our path orders have the
supplement property. On the other hand, path or-
ders in [12] does not have the supplement property.
Hence our path orders may gain an advantage over
ones in [12], when we try to prove termination of
PTRSs.

References

[1] T.Arts, Automatically Proving Termination
and Innermost Normalization of Term Rewrit-

9

ing Systems, Ph.D. thesis, Univ. of Utrecht,
1997.

[2] T.Arts, J.Giesl, Automatically Proving Ter-
mination Where Simplification Orderings Fail,
LNCS 1214 (TAPSOFT’97), pp.261–272, 1997.

[3] T.Arts, J.Giesl, Termination of Term Rewrit-
ing Using Dependency Pairs, Theoretical Com-
puter Science, Vol.236, pp.133–178, 2000.

[4] F,Baader, T.Nipkow, Term Rewriting and All
That, Cambridge University Press, 1998.

[5] N.Dershowitz, Orderings for Term-rewriting
Systems, Theoretical Computer Science,
Vol.17, pp.279–301, 1982.

[6] J.-Y.Girard, Interprétation fonctionnelle et
élimination des coupures de l’arithmétique
d’ordre supérieur, Ph.D. thesis, University of
Paris VII, 1972.

[7] J.-P.Jouannaud, A.Rubio, Rewrite Orderings
for Higher-Order Terms in η-Long β-Normal
Form and the Recursive Path Ordering, The-
oretical Computer Science 208(1–2), pp.33–58,
1998.

[8] J.-P.Jouannaud, A.Rubio, The Higher-Order
Recursive Path Ordering, In IEEE Symposium
on Logic in Computer Science, Trento, Italy,
1999.

[9] M.Iwami, Y.Toyama, Simplification Order-
ing for Higher-Order Rewrite Systems, IPSJ
Trans. on Programming, vol.40, No.SIG 4
(PRO 3), pp.1-10, 1999.

[10] M.Iwami, Termination of Higher-Order
Rewrite Systems, Ph.D. thesis, Japan Ad-
vanced Institute of Science and Technology,
1999.

[11] S.Kamin, J.-J.Lévy, Two Generalizations of
the Recursive Path Ordering, University of
Illinois at Urbana-Champaign, Unpublished
manuscript, 1980.

[12] K.Kusakari, On Proving Termination of Term
Rewriting Systems with Higher-Order Vari-
ables, IPSJ Transactions on Programming,
Vol.42, No.SIG 7 (PRO 11), pp.35-45, Jul 2001.

[13] T.Nipkow, Higher-Order Critical Pairs, In
Proc. of 6th IEEE Symp. Logic in Computer
Science, pp.342–349, IEEE Computer Society
Press (1991).

[14] F.Raamsdonk, On Termination of Higher-
Order Rewriting, In Proc. of 12th Int. Conf. on
Rewriting Techniques and Applications, LNCS
2051 (RTA2001), pp.261–275, 2001.

[15] M.Sakai, Y.Watanabe, T.Sakabe, An Exten-
sion of Dependency Pair Method for Prov-
ing Termination of Higher-Order Rewrite Sys-
tems, IEICE Trans. on Information and Sys-
tems, Vol.E84-D, No.8, pp.1025-1032, 2001.

[16] M.Sakai, K.Kusakari, On New Dependency
Pair Method for Proving Termination of
Higher-Order Rewrite Systems, The Interna-
tional Workshop on Rewriting in Proof and
Computation (RPC’01), pp.176-187, 2001.

[17] M.Sakai, K.Kusakari, On Proving Termina-
tion of Higher-Order Rewrite Systems by De-
pendency Pair technique, The First Interna-
tional Workshop on Higher-Order Rewriting
(HOR’02), p.25, 2002.

[18] W.W.Tait, Intensional Interpretation of Func-
tionals of Finite Type, Journal of Symbolic
Logic 32, pp.198–212, 1967.

10

