
On Dependency Pair Method for Proving
Termination of Higher-Order Rewrite Systems

Masahiko Sakai1 and Keiichirou Kusakari1

Graduate School of Information Science, Nagoya University.

Abstract. This paper explores how to extend the dependency pair tech-
nique for proving termination of higher-order rewrite systems. In the
first order case, the termination of term rewriting systems are proved by
showing the non-existence of an infinite R-chain of the dependency pairs.
However, the termination and the non-existence of an infinite R-chain
do not coincide in the higher-order case. We introduce a new notion of
dependency forest that characterize infinite reductions and infinite R-
chains, and show that the termination property of higher-order rewrite
systems R can be checked by showing the non-existence of an infinite
R-chain, if R is strongly linear or non-nested.

1 Introduction

Higher-order rewrite rules are used in functional programming, logic program-
ming and theorem proving. Automatic proving of the termination property is
especially required for theorem provers. Several orderings for higher-order terms
have been investigated by extending recursive path orderings for proving simple
termination properties of term rewriting systems [18, 17, 11, 9, 10]. On the other
hand, in order to prove the termination of typed λ-calculus, the notion of com-
putability was introduced by Tait [22] and Girard [7]. Based on computability
instead of simplification orders, Jouannaud and Rubio [12] and Raamsdonk [20]
introduced recursive path orders in higher-order rewriting systems.

The dependency pair technique [2–4] has been developed for proving termi-
nation of term rewriting systems. It is useful because it gives us a mechanical
support for proving non-simple termination by using known reduction orderings
to show simple termination. For example, consider the following term rewriting
systems that is not simple terminating:

R1 =
{

f(X, s(Y)) → f(X, Y)
g(s(X), Y) → g(f(X, Y), Y).

where the capital letters indicate free variables. By the dependency pair tech-
nique, the termination is shown by finding a reduction quasi-ordering º satisfy-

ing the following constraints:

f(X, s(Y)) º f(X, Y)
g(s(X), Y) º g(f(X,Y), Y)
f#(X, s(Y)) Â f#(X, Y)
g#(s(X), Y) Â g#(f(X,Y), Y)
g#(s(X), Y) Â f#(X,Y),

where f# and g# are freshly introduced function symbols. The great point is
that the ordering Â need not be monotonic:

s Â t ⇒ f(. . . , s, . . .) Â f(. . . , t, . . .)

Hence, it is enough for proving the termination to find a reduction quasi-ordering
º′ satisfying the following constraints obtained by replacing f(t, u) by t, called
an argument filtering method.

X º′ X
g(s(X), Y) º′ g(X,Y)
f#(X, s(Y)) Â′ f#(X,Y)
g#(s(X), Y) Â′ g#(X, Y)
g#(s(X), Y) Â′ f#(X, Y).

Kusakari extended the dependency pair method to higher-order systems that
do not support λ-abstraction [14, 15]. For the higher-order system including λ-
abstraction introduced by Nipkow [19], Sakai, Watanabe and Sakabe studied
how to apply the dependency pair method, and clarified an essential difficulty
when the system has λ-abstraction [21]. The difficulty is that the ordering must
have the subterm property:

C[s] º s for any term s and context C.

This means that we cannot use the powerful technique, the argument filtering
method, which is designed by eliminating unnecessary subterms. For example,
in order to show the termination of the following higher-order rewriting system

R2 =
{
f(λx.F (x), s(X))

→ f(λx.F (a), f(λx.F (x), X)),

we must find a reduction quasi-ordering º having subterm property satisfying
the following constraints:

f(λx.F (x), s(X)) º f(λx.F (a), f(λx.F (x), X))
f#(λx.F (x), s(X)) Â f#(λx.F (a), f(λx.F (x), X))
f#(λx.F (x), s(X)) Â f#(λx.F (x), X)
f#(λx.F (x), s(X)) Â F (a)
f#(λx.F (x), s(X)) Â F (cx)
f(t, u) º f#(t, u) for all terms t and u,

where cx is an fresh constant symbol. Unfortunately, we cannot use the argument
filtering method because the argument filtering breaks the subterm property.
Thus, we fail to proof the termination of R2.

This paper introduces the notion of dependency forest and try to remove the
requirement of subterm property for the quasi-ordering explained above. In re-
sults, we give a theorem that characterize the condition in which the dependency
pair technique works without requiring the subterm property. We also give two
kind of sufficient conditions, strongly linear and non-nested.

2 Preliminary Concepts

We assume the readers are familiar with the basic concepts and notations of
term rewriting systems [6] and typed lambda calculus [5].

Given a set S of basic types (or sorts), the set τS of types is generated from
S by the constructor → for functional types, that is, τS is the smallest set such
that

τS ⊇ S
τS ⊇ {α → β | α, β ∈ τS}

Types that are not basic are called higher-order types. We use α, β to denote
types.

Let Vα be a set of variables of a type α and V =
⋃

α∈τS
Vα. Let Fα be a set

of constants (or function symbols) of a type α and F =
⋃

α∈τS
Fα. We assume

V ∩ F = ∅, and Vα ∩ Vβ = ∅ and Fα ∩ Fβ = ∅ if α 6= β. We use Vh to stand for
the set of higher-order variables.

Constants are denoted by c, d, e, f and g. We use a for a constant or a
variable.

The set Tα of simply typed λ-terms of a type α is the smallest set satisfying
the followings:

Tα ⊇ Vα ∪ Fα

Tα ⊇ {(st) | s ∈ Tα′→α, t ∈ Tα′}
Tα ⊇ {(λx.s) | x ∈ Vβ′ , s ∈ Tβ , α = β′ → β}

We write t : α to stand for t ∈ Tα. Let T =
⋃

α∈τS
Tα. We call a simply typed

λ-term a term. We use l, r, s, t, u, v and w for terms. We use FV (t) for the
set of free variables in t and BV (t) for the set of bound variables in t. Let
V ar(t) = FV (t) ∪BV (t). We say t is closed if it contains no free variables. We
assume for convenience that bound variables in a term are all different, and are
disjoint from free variables. We use F , G, H, L, X, and Y for free variables and
x, y and z for bound variables unless it is known to be free or bound from other
conditions.

A term containing a special constant 2α of basic type α is called a context
denoted by Cα[]. We use Cα[t] for the term obtained from Cα[] by replacing
2α with t : α. Types are sometimes omitted in case this causes no confusion.

We will borrow from the λ-calculus the notions of α-equivalence, β-reduction
and η-reduction. We use ≡ to denote α-equality on terms. The term C[t] ≡
C[(· · · ((a t1)t2) · · · tn)] is η-expanded to C[λx.(t x)] if t is not of basic types and
it creates no β-redexes. We say t is η-long β-normal form (or normalized) if it
is a normal form with respect to both β-reduction and η-expansion. We use t,↓
for the η-long β-normal form of t. It is known that every term has a unique
normalized term [1].

A substitution σ is a mapping V → T such that the type of σ(X) is the
same as the type of X. We define Dom(σ) = {X | X 6≡ σ(X)} and V ar(σ) =⋃

X∈Dom(σ) V ar(σ(X)). We sometimes use {X1 7→ t1, . . . , Xn 7→ tn} to denote a
substitution σ such that Dom(σ) = {X1, . . . , Xn} and σ(Xi) ≡ ti for all i. The
restriction σZ of a substitution σ for Z ⊆ V is defined as follows:

σZ(X) ≡
{

σ(X) if X ∈ Z
X if X 6∈ Z

We sometimes say σ is an extension of σZ . We use Z for the complement V −Z
of Z. For any substitution σ, the mapping σ̃ : T → T is defined as follows:

σ̃(X) ≡σ(X)
σ̃(c) ≡ c
σ̃(s t) ≡ (σ̃(s) σ̃(t))
σ̃(λx.t)≡λx.(σ̃{x}(t)) if x 6∈ V ar(σ)

Note that the α-conversion of t is possibly needed before applying σ̃ to t in case
of V ar(σ) ∩BV (t) 6= ∅. Instead of σ̃(t), we write tσ̃ or even tσ by identifying σ
and σ̃. A substitution σ is said to be normalized if Xσ is a normalized term for
all X ∈ Dom(σ).

Every normalized term can be represented by the form λx1 · · ·xm.
(· · · (at1) · · · tn) where m,n ≥ 0, a ∈ F ∪ V and (· · · (at1) · · · tn) is of basic
types. In this paper, we represent this term t by λx1 · · ·xm.a(t1, . . . , tn). The
top symbol of t is defined as top(t) = a.

Let t be a normalized term. We say t is a pattern if top(t) ∈ F , free variables
in t are linear and the η-normal forms of u1, . . ., un are different bound variables
for any subterm F (u1, . . . , un) of t such that F ∈ FV (t) [16]. Let α be a basic
type, l : α be a pattern and r : α be a normalized term such that FV (l) ⊇ FV (r).
Then, l → r is called a higher-order rewrite rule (with type α). A higher-order
rewrite system (HRS) is a finite set of higher-order rewrite rules. Given an HRS
R, a normalized term s is reduced to a term t, written s →R t, s →l→r,σ t or
simply s → t, if s ≡ C[lσ↓] and t ≡ C[rσ↓] for some context C[], substitution
σ and rule l → r ∈ R. If C[] ≡ 2, it is written s

Λ→ t; otherwise it is written
s

>Λ→ t. Note that t is also normalized if s → t [19].
We denote by ∗→ the reflexive transitive closure of a relation →. If there

is no infinite sequence v ≡ v0 → v1 → · · · from v, we say v is terminating
(with respect to →). If every v is terminating with respect to →, we say → is
terminating. We also say that an HRS R is terminating if →R is terminating.

The strict part Â of a quasi-ordering º is defined as s Â t ⇐⇒ s º t∧t 6º s.
We also write s ∼ t for s º t ∧ t º s. An ordering Â on T is said to be well-
founded if it does not admit an infinite sequence t1 Â t2 Â · · · of elements t1, t2,
. . . ∈ T . A quasi-ordering º is closed under substitutions if s º t ⇒ sσ↓º tσ↓ and
s Â t ⇒ sσ↓Â tσ↓ for all substitutions σ. A quasi-ordering º is weakly monotone
if s º t ⇒ f(. . . , s, . . .) º f(. . . , t, . . .) for all function symbols f . A quasi-
ordering is called a reduction quasi-ordering if it is well-founded, closed under
substitutions and weakly monotone. Note that º always needs to be preserved
under α-conversion since we do not distinguish α-equivalent terms

3 Dependency Pair and Forest

We extend the notion of dependency pairs [2–4] for proving termination of TRSs
to higher-order rewrite systems.

We use the ordinary subterm relation, while the reference [21] uses a special
subterm relation 1 . For easy treatment against the name collision between a
free variable and a bound variable, we assume that each free variable originated
from a bound variable is fresh. For example, f(Y, Y) is a subterm of λx.f(x, x).

Definition 1. Let s be a normalized term. A term t is a subterm of s, denoted
by s ¥ t, if

(a) s ≡ t, or
(b) s ≡ λx.s′ and s′{x 7→ X}¥ t where X is a fresh variable, or
(c) s ≡ a(u1, . . . , un) and ui ¥ t for some i ∈ {1, . . . , n}.

We say t is a proper subterm of s, denoted by s ¤ t, if s ¥ t and s 6≡ t.

We say f is a defined symbol if f = top(l) for some rule l → r and let
D = {top(l) | l → r ∈ R} and D# = {f# | f ∈ D} where f# is a symbol
obtained by marking f in D. We define s# ≡ f#(t1, . . . , tn) if s ≡ f(t1, . . . , tn)
and f ∈ D; otherwise s# ≡ s.

Dependency pairs and R-chain are defined the same as the first order case,
while in the reference [21] a dependency pair of a rule l → r is 〈l#, t#〉, where t
is a subterm of r such that top(t) ∈ D ∪ FVh.

Definition 2. The set DPl→r of dependency pairs of a rule l → r is defined as
follows:

DPl→r = {〈l#, t#〉 | r ¥ t, top(t) ∈ D}

DPR denotes the collection of all dependency pairs of rules in HRS R.

1 In the reference [21], f(cx, cx) is a subterm of λx. f(x, x), where cx is a fresh constant.

Example 1. Consider the following HRS:

R3 =





map(λx.F (x), nil) → nil,
map(λx.F (x), cons(X, L))

→ cons(F (X), map(λx.F (x), L))

Then, we have only one dependency pair:

〈map#(λx.F (x), cons(X, L)), map#(λx.F (x), L) 〉.
Definition 3. Let 〈s1, t1〉 · · · 〈sn, tn〉 be a (possibly infinite) sequence of depen-
dency pairs for an HRS R. It is called an R-chain if there exist substitutions
σ1, . . . , σn such that tiσi↓ ∗→ si+1σi+1↓ holds for all i = 1, . . . , n− 1.

Note that we use a substitution σi for each dependency pair 〈si, ti〉 in the
definition of the R-chains, although the original definition uses only one substi-
tution. The reason is only for presentation convenience.

Example 2. Consider the following HRS with g, h, i ∈ Fα→α, f ∈ F(α→α)→α,
F ∈ Vα→α, X ∈ Vα and basic type α:

R4 =





f(λx.F (x)) → F (a),
g(a) → f(λx.i(x)),
i(X) → h(g(X)).

We have three dependency pairs 〈g#(a), f#(λx.i(x))〉, 〈g#(a), i#(Y)〉,
〈i#(X), g#(X)〉. We have an infinite reduction sequence:

g(a) →R4 f(λx.i(x)) →R4 i(a) →R4 h(g(a))
→R4 h(f(λx.i(x))) →R4 · · ·

and an infinite R4-chain

〈g#(a), i#(Y)〉〈i#(X), g#(X)〉〈g#(a), i#(Y)〉 · · ·
with Y σ1 ≡ a, Xσ2 ≡ a, Y σ3 ≡ a, · · · .

We have to show how to construct an infinite R-chain from an infinite re-
duction sequence for soundness of the dependency pair method. However, the
construction method of the first order case is not applicable to the infinite re-
duction sequence in Example 2.

Definition 4. A non-terminating term u in η-long β-normal form is said to be
minimal if any proper subterm of u is terminating.

Note that minimal non-terminating terms are with a basic type since the
types of rewrite rules are basic. We also note that a term has at least one
minimal non-terminating subterm if it is not terminating.

We say a substitution σ is terminating, if Fσ↓ is terminating for any variables
F .

Lemma 1. Let r and u be normalized terms and σ be a terminating substitution
such that V ar(σV ar(r)) and BV (r) are disjoint. If u is minimal non-terminating
and rσ↓ ¥u, then the following (a) or (b) holds for some v such that r ¥ v:

(a) top(v) = top(u) ∈ D and vσ′↓≡ u for some extension σ′ of σ,
(b) top(v) is a higher-order variable, vσ↓ ¥u and v′σ′↓6≡ u for any proper subterm

v′ of v and extension σ′ of σ.

Definition 5. Consider the following infinite sequence:

u1
>Λ→ · · · >Λ→ uk1

Λ→ v1

¥ uk1+1
>Λ→ · · · >Λ→ uk2

Λ→ v2

¥ uk2+1 · · · ,

where 0 ≤ k1 < k2 < · · · . We say the infinite sequence is minimal non-
terminating, if ui is minimal non-terminating for every i.

Proposition 1. If an HRS R is not terminating, there exists a minimal non-
terminating sequence.

Example 3. A minimal non-terminating sequence of R4 is

g(a) Λ→R4 f(λx.i(x))

¥ f(λx.i(x)) Λ→R4 i(a)

¥ i(a) Λ→R4 h(g(a))

¤ g(a) Λ→R4 f(λx.i(x))

¥ f(λx.i(x)) Λ→R4 i(a)
...

We need to introduce the notion of descendants (residuals) that traces the re-
dex occurrences[8, 13]. Here, we will give an intuitive explanation of higher-order
version of descendants in order to concentrate on the essence of the dependency
forest. The precise definition[13] is found in Sect. 4. Let’s consider a reduction
A : C[lσ↓] → C[rσ↓]. The descendants of an occurrence p in C[lσ↓] with respect
to A are

(1) p if p is in C[],
(2) none if p corresponds to the non-variable occurrence of l,
(3) the occurrences corresponding to Fσ in C[rσ↓] if p is in Fσ for V ar(l)

as shown in Fig. 1. This notions can be extended naturally to reduction sequences
and minimal non-terminating sequences.

(2)

l r
F

F
X

disappears

X

X

22

C[] C[]

(1)

(3)

Fig. 1. Descendants

Definition 6. Given a minimal non-terminating sequence:

u1
>Λ→e1,σ1 · · · >Λ→ek1−1,σk1−1 uk1

Λ→ek1 ,σk1
v1

¥uk1+1
>Λ→ek1+1,σk1+1 · · · >Λ→ek2−1,σk2−1 uk2

Λ→ek2 ,σk2
v2

...,

where each ei denotes a rule li → ri and we can assume that Dom(σi) = FV (li)
without loss of generality. We define a dependency forest 〈N, E〉, where N is a
node set whose elements are triples of a natural number, a term and a flag (Λ or
>Λ), and E is a set of edges labeled by either a dependency pair or a substitution.
(Step 1) Let N := {〈1, t, p〉 | u1 ¥ t, top(t) ∈ D} and E := ∅, where p is Λ if
u1 ≡ t; otherwise p is >Λ.
(Step 2) Do the following for each i in increasing order from 1:

i) In case of ui ≡ C[liσi↓] >Λ→ ui+1 ≡ C[riσi↓], do the followings for each
dependency pair 〈l#i , t#〉:

- Add a node 〈i + 1, tσi↓, >Λ〉 and an edge with the label 〈l#i , t#〉 from the
node 〈j + 1, t′, >Λ〉 to 〈i + 1, tσ↓, >Λ〉, where 〈j + 1, t′, >Λ〉 is a node
for the greatest j such that j < i and the occurrence of liσi↓ in ui is a
descendant of t′ in uj+1.

ii) In case of ui ≡ liσi↓ Λ→ vm ≡ riσi↓ and i = km, either (a) or (b) of Lemma 1
holds for some w such that ri ¥ w by Lemma 1.

ii-i) For the case (a), add a node 〈i + 1, tσi↓, p〉 and an edge with the label
〈l#i , t#〉 from the node 〈km−1 + 1, ukm−1+1, Λ〉 to 〈i + 1, tσi↓, p〉 for each
dependency pair 〈l#i , t#〉 such that w¥t, where k0=0, and p is Λ if w ≡ t;
otherwise p is >Λ.

ii-ii) For the case (b), add a node 〈i + 1, ui+1, Λ〉 and an edge with the label θ
from the node 〈j, t′, >Λ〉 to 〈i+1, ui+1, Λ〉, where j is the greatest number
such that j < i and the occurrence ε of ui+1 is an descendant of t′ in uj

and θ is a substitution such that t′θ↓≡ ui+1.

(Step 3) For every node O such that the flag part of O is >Λ and any flag parts
of reachable nodes from O are >Λ, remove O and edges connected to O.

Lemma 2. The first item of any root nodes of dependency forests is 1.

Note that we have infinite nodes having flag Λ. Hence, dependency forests
still have infinite nodes after nodes removal in Step 3 of the definition.

If there exists an infinite path in a dependency forest, we can construct a
sequence of dependency pairs from the path. Then, we can show that the se-
quence is R-chain from the construction of the dependency forest. Moreover, the
R-chain is infinite because we have no successive edges labeled by a substitution
in every path.

Example 4. Consider the HRS R4 in Example 2. The dependency forest of the
minimal non-terminating sequence in Example 3 is shown in Fig. 2(a), where
nodes whose third items are Λ and >Λ are drawn by solid lines and dashed
lines, respectively. From the labels of the infinite path

〈1, g(a), Λ〉 〈2, i(Y), >Λ〉 〈3, i(a), Λ〉 〈4, g(a), Λ〉 · · ·
in the dependency forest, we can construct the following infinite R4-chain:

〈g#(a), i#(Y)〉
〈i#(X), g#(X)〉
〈g#(a), i#(Y)〉
〈i#(X), g#(X)〉

....

The following example shows that the necessity of the case i) of Step 2 in the
definition of dependency forests.

Example 5. Consider the R4 in Example 2. We have the following minimal non-
terminating sequence different from that in Example 3.

g(a) Λ→R4 f(λx.i(x))

¥ f(λx.i(x)) >Λ→R4 f(λx.h(g(x))) Λ→R4 h(g(a))

¤ g(a) Λ→R4 f(λx.i(x))
...

The dependency forest of this sequence is shown in Fig. 2(b). The infinite R-chain
constructed from the dependency forest is the same as that in Example 4.

If we remove the case i) of Step 2 from the definition of dependency forests,
the node 〈3, g(Y), >Λ〉 disappears and we have no infinite path.

The following is a characterization lemma.

Lemma 3. Let R be an HRS in the class that dependency forests are finite
branching. Then, the non-existence of infinite R-chains implies the termination
of R.

Proof. Assume R is not terminating. Then, we have a minimal non-terminating
sequence by Proposition 1. The dependency forest has infinite nodes with finite
root nodes by Lemma 2. Since it is also finite branching, we have an infinite
path from König’s Lemma that finite branching infinite tress have an infinite
path. From the construction of the forest, an infinite R-chain is obtained from
the infinite path. ut

4 Finite-Branchingness of Dependency Forest

In this section, we show sufficient conditions that guarantee the finite branch-
ingness of the dependency forests.

4.1 Descendant

This subsection shows the precise definition of the descendants developed in [13].
The occurrence of a normalized term is based on the form of

λx1 · · ·xm.a(t1, . . . , tn). In order to simplify the definition of descendants, the
same representation of occurrence is assigned to λx.t and t in a term · · ·λx.t · · · .
In this section, we abbreviate λx1 · · ·xm as λx. An occurrence of a normalized
term is a sequence of natural numbers. We use p and q for occurrences. The set
of occurrences of t ≡ λx.a(t1, . . . , tn) is defined by Occ(t) = {ε} ∪ {ip | 1 ≤ i ≤
n, p ∈ Occ(ti)}. Let p and q be occurrences. We write p ≤ q if pp′ = q for some
occurrence p′. Moreover we write p < q if p′ 6= ε. We say p and q are disjoint if
p 6≤ q and p 6≥ q. The subterm at the occurrence p is represented as follows:

(λx.a(t1, . . . , tn))|p ≡
{

a(t1, . . . , tn) if p = ε
ti|q if p = iq.

OccV (t) indicates the set of occurrences p ∈ Occ(t) such that top(t|p) is a free
variable in a normalized term t. t[u]p represents the term obtained from a nor-
malized term t by replacing t|p with a normalized term u having the same basic
type as t|p. This is defined as follows:

(λx.a(t1, . . . , tn))[u]p

≡
{

λx.u if p = ε
λx.a(. . . , ti[u]q, . . .) if p = iq.

In the following, we sometimes refer the reduction sequence A : t0 → t1 →
· · · → tn by the attached label A. The definition of descendants of redexes
are complicated because the occurrences of redexes move considerably by β-
reductions taken in the reduction as the following example shows.

Example 6. Consider the following HRS R8,

R8 =
{

apply(λx.F (x), X) → F (X)
a → b,

and a reduction A1 : t ≡ apply(λx.f(g(x), x), a) → f(g(a), a) ≡ s. The descen-
dants of a redex a on occurrence 2 of t are occurrences 2 and 11 of s as shown
in Fig. 3.

In order to follow the occurrences of redexes correctly, the mutually recursive
functions PV and PT is used, each of which returns a set of occurrences. The
function PV (t, σ, F, p) returns the set of the corresponding occurrences of tσ↓ to
(Fσ)|p. The function PT (t, σ, p) returns the set of the corresponding occurrences
of tσ↓ to t|p. In the previous example, we have PV (F (X), σ,X, ε) = {11, 2} where
σ = {F 7→ λx.f(g(x), x), X 7→ a}. This shows that occurrences of a introduced
by σ appears on the occurrences 11 and 2 of F (X)σ↓= f(g(a), a).

Definition 7. Let t be a normalized term, σ be a normalized substitution and
F be a variable. The function PV is defined as follows for an occurrence p ∈
Occ(Fσ).

PV (t, σ, F, p) =



{p} if t ≡ F (1)⋃
i{iq | q ∈ PV (ti, σ, F, p)} (2)

if t ≡ a(t1, . . . , tn), n > 0 and
a ∈ F ∪Dom(σ)

PV (t′, σ{x1,...,xn}, F, p) (3)
if t ≡ λx1 · · ·xn.t′, n > 0 and

F 6∈ {x1 · · ·xn}⋃
i PV (t′, σ′, yi, PV (ti, σ, F, p)) (4)

if t ≡ G(t1, . . . , tn), n > 0,
G ∈ Dom(σ) and F 6= G

where Gσ ≡ λy1 . . . yn.t′

s.t. σ′ = {y1 7→ t1σ↓, . . . , yn 7→ tnσ↓}
(
⋃

i PV (t′, σ′, yi, PV (ti, σ, F, p)))∪PT (t′, σ′, p)(5)
if t ≡ F (t1, . . . , tn), n > 0 and

F ∈ Dom(σ)
where Fσ ≡ λy1 . . . yn.t′

s.t. σ′ = {y1 7→ t1σ↓, . . . , yn 7→ tnσ↓}
∅ if t ≡ G 6= F or t ∈ F (6)

where PV (t, σ, F, P) denotes
⋃

p∈P PV (t, σ, F, p) for a set P of occurrences.

Definition 8. Let t be a normalized term, σ be a normalized substitution. The
function PT is defined as follows for an occurrence p ∈ Occ(t).

PT (t, σ, p) =



{ε} if p = ε (1)
{iq | q ∈ PT (ti, σ, p′)} (2)

if p = ip′, t ≡ a(t1, . . . , tn), n > 0
and a ∈ F ∪Dom(σ)

PT (t′, σ{x1,...,xn}, p) (3)
if p 6= ε, t ≡ λx1 · · ·xn.t′ and n > 0

PV (t′, σ′, yi, PT (ti, σ, p′)) (4)
if p = ip′, t ≡ G(t1, . . . , tn), n > 0

and G ∈ Dom(σ)
where Gσ ≡ λy1 . . . yn.t′

s.t. σ′ = {y1 7→ t1σ↓, . . . , yn 7→ tnσ↓}

Definition 9. Let A : s[lσ↓]p →l→r s[rσ↓]p be a reduction for a rewrite rule
l → r ∈ R, a substitution σ, a term s and occurrence p in s. Then, the set of
descendants of q in s by A is defined as follows:

q\A=





{q} if q | p or q ≺ p
{pp3 | p3 ∈ PV (r, σ, top(l|p1), p2)}

if q = pp1p2 and p1 ∈ OccV (l)
∅ otherwise.

For normalized terms s and t such that A : s[t]p ¥ t, the descendants is
defined simply as

q\A =
{{p′} if q = pp′

∅ otherwise.

For a reduction sequence B : s (→ ∪¥)∗ t, the set q\B of descendants is naturally
extended.

4.2 Sufficient Conditions

This subsection shows conditions that guarantees the finite branchingness of the
dependency forests (Lemma 4).

We say a term t is strongly linear if there exists an α-equal term s each of
which variable occurs only once in it. For example, f(X,Y), f(λx.x, λx.g(x))
are strongly linear, while f(X, X), f(λx.g(x, x)) are not. We say an HRS is
strongly linear if r is strongly linear for every rule l → r. We say a substitution
σ = {X1 7→ t1, . . . , Xn 7→ tn} is strongly linear if the term c(t1, . . . , tn) is
strongly linear for a constant c.

Let W be a set of variables. We say a term t is nested with respect to W if
there is a subterm F (t1, . . . , tn) in t such that F ∈ W and

(a) W ∩ FV (ti) 6= ∅ for some i, or
(b) t′ is nested with respect to {x1, . . . , xm} for some ti ≡ λx1 · · ·xm.t′.

Especially, we say a term t is nested if it is nested with respect to some free vari-
able in FV (t). For example, F (X) and F (λxy.x(y)) are nested, while f(F (d), X),
f(λxy.x(y)), f(λx.F (x)), f(λxy.F (x, y)) and F (λxy.f(x, y)) are not. We say an
HRS is non-nested if r is non-nested for every rule l → r.

The following is the key lemma.

Lemma 4. Let R be an HRS and DF be a dependency forest for a minimal
non-terminating sequence A.

(a) If R is strongly linear and A begins at a strongly linear term, then DF is
finite branching.

(b) If R is non-nested, then DF is finite branching.

From now, we prepare technical lemmas for proving the above lemma.

Proposition 2 ([13]). If F 6∈ (FV (t) ∩ Dom(σ)) then PV (t, σ, F, p) = ∅ for
any p.

Proposition 3. Let t be a strongly linear term. Let σ be a strongly linear and
closed substitution. Then tσ↓ is strongly linear.

We use |P | for the number of elements of a set P .

Lemma 5. Let t be a strongly linear term. Let σ be a strongly linear, normalized
and closed substitution.

(a) If p is an occurrence of Fσ then |PV (t, σ, F, p)| ≤ 1.
(b) If p is an occurrence of t, then |PT (t, σ, p)| ≤ 1.

Proof. We prove (a) and (b) simultaneous induction on the definition of PV and
PT . For (a), we have six cases according to the definition of PV . We abbreviate
PV (t, σ, F, p) as P .
(PV1) Since t ≡ F , we have P = {p} and the claim trivially holds.
(PV2) Let t ≡ a(t1, . . . , tn). we have at most one i such that ti contains F from
the linearity of t. Hence, P = ∅ or P = PV (ti, σ, F, p) from Proposition 2. Thus,
the claim holds from the induction hypothesis.
(PV3) Let t ≡ λx1 · · ·xn.t′. The claim directly holds by the induction hypothesis
since t′ is also strongly linear.
(PV4) Let t ≡ G(t1, . . . , tn) for F 6= G. Since we have at most one i such that ti
contains F from linearity of t, we get P = ∅ or P = PV (t′, σ′, yi, PV (ti, σ, F, p))
from Proposition 2 where Gσ ≡ λy1 · · · yn.t′ and σ′ = {y1 7→ t1σ↓, . . . , yn 7→ tnσ↓
}. In the former case, we have done. Consider the latter case. We have that t′ is
strongly linear from the strong linearity of σ. We also have that σ′ is strongly
linear from the strong linearity of t and σ by Proposition 3. Since we have
|PV (ti, σ, F, p)| ≤ 1 by the induction hypothesis, P = ∅ or P = PV (t′, σ′, yi, q)
for {q} ∈ PV (ti, σ, F, p). Therefore, the claim holds by the induction hypothesis.

(PV5) In case of t ≡ F (t1, . . . , tn), we have no i such that ti contains F from
linearity of t. Hence, we have P = PT (t′, σ′, p) by Proposition 2 where t′ and
σ′ are given as same as in the case (PV4). The claim holds by the induction
hypothesis since t′ and σ′ are strongly linear.
(PV6) In this case, it is trivial.

For (b), we have four cases according to the definition of PT . We abbreviate
PT (t, σ, p) as P .
(PT1) In this case, we have P = {ε} and the claim trivially holds.
(PT2) Let p = ip′ and t ≡ a(t1, . . . , tn). Then, we have P = {iq | q ∈
PT (ti, σ, p)} and the claim holds from the induction hypothesis.
(PT3) Let t ≡ λx1 · · ·xn.t′. Then, P = PT (t′, σ|x1,...,xn , p). Since t′ is strongly
linear, the claim holds by the induction hypothesis.
(PT4) Let p = ip′ and t ≡ G(t1, . . . , tn). We have |PT (ti, σ, p′)| ≤ 1 by the in-
duction hypothesis. Thus, P = ∅ or P = PV (t′, σ′, yi, q) for {q} ∈ PT (ti, σ, p′).
Since t′ and σ′ are strongly linear from the strong linearity of t and σ by Propo-
sition 3, the claim holds by the induction hypothesis. ut
Lemma 6. Let R be a strongly linear HRS, t be a strongly linear term and p be
an occurrence of t. Then, p\A is empty or singleton for a sequence A : t (→R

∪¥)∗ t′.

Proof. It is enough to show the case A : t (→R ∪¥) t′ because t′ is also strongly
linear.

For A : t ¥ t′, it is trivial.
Let A : t ≡ t[lσ↓]q →R t[rσ↓]q ≡ t′ for some l → r ∈ R. We can assume t

is closed without loss of generality. The non-trivial case is that p = qp1p2 and
p1 ∈ OccV (l). Since t is strongly linear and closed and l is a pattern, we have σ
is strongly linear and closed. Hence, the lemma holds by Lemma 5(a). ut
Lemma 7. Let t be a term and σ be a substitution.

(a) If the occurrences in PF ⊆ Occ(Fσ) are pairwise disjoint for each F ∈
Dom(σ) and t is non-nested with respect to Dom(σ), then the occurrences
in

⋃
F∈Dom(σ) PV (t, σ, F, PF) are pairwise disjoint.

(b) If the occurrences in P ⊆ Occ(t) are pairwise disjoint and t′ is non-nested
with respect to {y1, . . . , yn} for every X ∈ FV (t) where Xσ ≡ λy1 · · · yn.t′,
then the occurrences in PT (t, σ, P) are pairwise disjoint.

Proof. We prove (a) and (b) simultaneous induction on the definition of PV and
PT . Firstly, consider (a). We abbreviate

⋃
F∈Dom(σ) PV (t, σ, F, PF) as Q.

(1) In case of t ≡ F , we have Q = PV (F, σ, F, PF) = PF by Proposition 2 and
the definition of PV . Hence, the claim trivially holds.

(2) In case of t ≡ a(t1, . . . , tn) for a ∈ F ∪ Dom(σ), the occurrences
in

⋃
F∈Dom(σ) PV (ti, σ, F, PF) are pairwise disjoint from the induction

hypothesis for every i. The claim follows from Q = {iq | q ∈⋃
F∈Dom(σ) PV (ti, σ, F, PF)}.

(3) In case of t ≡ λx1 · · ·xn.t′, let σ′ = σ|{x1,...,xn}. Since we have Q =⋃
F∈Dom(σ′) PV (t′, σ′, F, PF) and t′ is non-nested with respect to Dom(σ′),

the claim holds by the induction hypothesis.
(4) In case of t ≡ G(t1, . . . , tn) and G ∈ Dom(σ). Since we have no

i such that ti contains free variables in Dom(σ) from non-nestedness,⋃
F∈Dom(σ) PV (ti, σ, F, PF) = ∅ from Proposition 2. Hence, Q =

PT (t′, σ′, PG), where Gσ = λy1 · · · yn.t′ and σ′ = {y1 7→ t1σ
′, . . . , yn 7→

tnσ′}. We also have that t′i is non-nested with respect to {z1, . . . , zm} for
every i, where yiσ

′ ≡ ti ≡ λz1 · · · zm.t′i. Since tiσ
′ = ti for each i, we can

apply the induction hypothesis and the claim holds.
(5) In the other cases, it is trivial.

Secondly, consider (b). We abbreviate PT (t, σ, P) as Q. In case of ε ∈ P , we
have P = {ε} since the occurrences in P are pairwise disjoint. Hence, we have
Q = {ε} and the claim holds. In case of ε 6∈ P , we have two subcases.

(1) In case of t ≡ λx1 · · ·xn.t′, we have Q = PT (t′, σ|{x1,...,xn}). The claim holds
by the induction hypothesis.

(2) In case of t ≡ a(t1, . . . , tn), let Pi = {p | ip ∈ P} for each i. The occurrences
in Q′

i = PV (ti, σ, Pi) are pairwise disjoint for each i from the induction
hypothesis.

(2-1) If a ∈ F ∪ Dom(σ), we have Q =
⋃

i{iq | q ∈ Q′i}. Hence, the claim
follows.

(2-2) If a = G ∈ Dom(σ), let Gσ ≡ λy1 · · · yn.t′. Then, we have Q =⋃
i PV (t′, σ′, yi, Q

′
i), where σ′ = {y1 7→ t1σ↓, . . . , yn 7→ tnσ↓ }. Since

t′ is non-nested with respect to Dom(σ′), the occurrences in Q =⋃
i PV (t′, σ′, yi, Q

′
i) are pairwise disjoint by the induction hypothesis.

ut

Lemma 8. Let R be a non-nested HRS, t be a term and P be a set of occurrences
of t. If the occurrences in P are pairwise disjoint, then the occurrences in P\A
are also pairwise disjoint for a reduction A : t (→R ∪¥)∗ t′.

Proof. It is enough to show the case A : t (→R ∪¥) t′.
For A : t ¥ t′, it is trivial.
Let A : t ≡ t[lσ↓]q →R t[rσ↓]q ≡ t′ for some l → r ∈ R. Let PF = {p2 |

qp1p2 ∈ P, F = top(l|p1)}. Then, we have

P\A = {p ∈ P | p 6º q}
∪ {qp3 | p3 ∈

⋃
F∈Dom(σ) PV (r, σ, F, PF)}.

Since the occurrences in PF are pairwise disjoint for each F ∈ Dom(σ), the
lemma holds by Lemma 7(a). ut

Proof of Lemma 4.

Let R be an HRS and DF be a dependency forest for a minimal non-
terminating sequence A:

u1
>Λ→e1 u2

>Λ→e2 · · · >Λ→ek1−1 uk1
Λ→ek1

v1

¥uk1+1
>Λ→ek1+1 uk1+2

>Λ→ek1+2 · · · >Λ→ek2−1 uk2
Λ→ek2

v2

...,

where each ei denotes a rule li → ri.
Firstly, we show that DF is finite branching if R is non-nested. Consider

nodes having flag Λ, say 〈n, t, Λ〉. The outedges from it are added only in the
case ii-i) of the definition. In this case, we have n = km−1 + 1 for some m and
outedges from it are added only when i = km. Thus no infinite outedges from
these nodes.

Consider the other types of nodes 〈n, t, >Λ〉. Since these nodes are not re-
moved by (Step 3) of the definition, there is a node having a flag Λ reachable
from 〈n, t,>Λ〉.
(1) If it is directly reachable by an edge added in the case ii-ii) of the definition,

the destination of the edge is 〈i+1, ui+1, Λ〉, n < i = km and the occurrence
ε of ui+1 is an descendant of t in un. Hence, ui+1 is the only one descendant
of t in un from Lemma 8. Since ukm+1

Λ→ vm+1, the descendants of t in un

disappears by this reduction, which means that no outedge from 〈n, t,>Λ〉
to nodes numbered greater than km+1. Thus, no infinite outedges from this
node.

(2) Otherwise, we have a path to a node 〈km + 1, ukm+1, Λ〉 from 〈n, t, >Λ〉 via
edges added by i) and an edge added by ii-ii). Similarly to the above case, we
can show that no outedge from 〈n, t, >Λ〉 to nodes numbered greater than
km + 1.

Secondly, we can show that DF is finite branching if R is strongly linear and A
begins at a strongly linear term by using Lemma 6 instead of Lemma 8, ut
Example 7. Consider the following strongly linear HRS:

R5 =





f(X,λx.F (x)) → F (X),
g(a, a) → f(a, λx.g(b, x))
b → a

and the minimal non-terminating sequence

f(b, λx.g(x, x)) → g(b, b)
¥g(b, b) → g(a, b) → g(a, a) → f(a, λx.g(b, x))
¥f(a, λx.g(b, x)) → g(b, a)
¥g(b, a) → g(a, a) → f(a, λx.g(b, x))
¥f(a, λx.g(b, x)) → g(b, a)

...

The dependency forest of the minimal non-terminating sequence is shown in
Fig. 4(a), where dotted nodes and edges are removed ones by (Step 3) of the
definition.

Example 8. Consider the following non-nested HRS:

R6 =





f(λxy.F (λz.x(z), y))
→ h(F (λz.g(z), a), F (λz.g(z), a))

g(a) → f(λxy.h(x(a), y))

and the minimal non-terminating sequence

f(λxy.x(y)) → h(g(a), g(a))
¥g(a) → f(λxy.h(x(a), y))
¥f(λxy.h(x(a), y)) → h(h(g(a), a), h(g(a), a))
¥g(a) → f(λxy.h(x(a), y))

...

One duplication appears in this reduction sequence, i.e., only the first reduction
duplicates the term a. The dependency forest of the minimal non-terminating
sequence is shown in Fig. 4(b).

Now we obtain the following theorem from lemmas 3 and 4.

Theorem 1. Let R be an HRS R.

(a) If R is strongly linear and there is no infinite R-chain, every strongly linear
term is terminating.

(b) If R is non-nested and there is no infinite R-chain, R is terminating.

Example 9. Consider the following HRS R7:

R7 =
{
compo(λx.F (x), λy.G(y), Z) → F (G(Z)),
apply(λx.F (x), X) → F (X)

Since R7 has no dependency pair, there is no (infinite) R-chain. Hence, it is
terminating by Theorem 1(a).

Example 10. Consider the following nested HRS[21] that is not strongly linear:

R8 = { f(g(λx.F (x))) → F (g(λx.h(F (x)))) }
Although there is no dependency pair, it is not terminating, i.e., we have an
infinite reduction sequence:

f(g(λx.f(x)))
→R8 f(g(λx.h(f(x))))
→R8 h(f(g(λx.h(h(f(x))))))
→R8 h(h(h(f(g(λx.h(h(h(f(x)))))))))

...

and the dependency forest for the minimal non-terminating sequence

f(g(λx.h(f(x))))
Λ→ h(f(g(λx.h(h(f(x))))))
¥f(g(λx.h(h(f(x)))))
Λ→ h(h(h(f(g(λx.h(h(h(f(x)))))))))

¥f(g(λx.h(h(h(f(x))))))
...

is shown in Fig. 5.

The following example shows that even the duplication of first-order variable
is harmful.

Example 11. Consider the following HRS:

R9 =
{

i(X) → g(X,X),
g(h(λx.F (x)), X) → F (X)

Although we have only one dependency pair 〈i#(X), g#(X,X)〉, the following
infinite reduction sequence exists;

i(h(λx.i(x)))
→R9 g(h(λx.i(x)), h(λx.i(x)))
→R9 i(h(λx.i(x)))

...

and the dependency forest for the minimal non-terminating sequence

i(h(λx.i(x))) Λ→ g(h(λx.i(x)), h(λx.i(x)))
¥g(h(λx.i(x)), h(λx.i(x))) Λ→ i(h(λx.i(x)))
¥i(h(λx.i(x))) Λ→ g(h(λx.i(x)), h(λx.i(x)))

...

is shown in Fig. 6.

5 Proving termination

We can apply the method similarly to the first-order case for proving termi-
nation of HRSs. While the reference [21] requires a reduction quasi-ordering
satisfying the subterm property for proving termination, we do not need the
subterm property anymore. This means that we can use the argument filtering
method to construct the quasi-ordering.

Lemma 9. Let R be an HRS. If there exists a reduction quasi-ordering º such
that

(a) l º r for all rules l → r ∈ R, and
(b) s Â t for all dependency pairs 〈s, t〉,
then R has no infinite R-chain.

Proof. Assume we have an infinite R-chain 〈s1, t1〉 〈s2, t2〉 〈s3, t3〉 · · · . Then there
exist substitutions σ1, σ2, . . . such that tiσi↓ ∗→ si+1σi+1↓ for all i. We have
tiσi↓º si+1σi+1↓ from Premise (a) and the closedness of º under substitutions. It
follows from si Â ti for all i that we have an infinite sequence s1σ1↓Â s2σ2↓Â · · · ,
which is a contradiction. ut
Corollary 1. Let R be an HRS. If there exists a reduction quasi-ordering sat-
isfying the conditions (a) and (b) in Lemma 9. Then,

(a) If R is strongly linear, every strongly linear term is terminating.
(b) If R is non-nested, R is terminating.

Example 12. Consider the HRS R2, which is strongly linear. From Corol-
lary 1(a), we must find a reduction quasi-ordering º satisfying the following
constraints:

f(λx.F (x), s(X)) º f(λx.F (a), f(λx.F (x), X))
f#(λx.F (x), s(X))Âf#(λx.F (a), f(λx.F (x), X))
f#(λx.F (x), s(X))Âf#(λx.F (x), X).

By using argument filtering method, it is enough to find a reduction quasi-
ordering º′ satisfying s(X) º′ X obtained the above conditions by replacing
f(t, u) by u and f#(t, u) by u. Since it is easy to find such º′, we can show that
R2 is terminating.

6 Discussion

By extending the dependency pair approach to the higher-order setting, one can
benefit from the following features of dependency pairs:

– One need not include any subterm of right hand side whose top symbol is
higher-order variable to dependency pairs.

– One can indicate a difference between usual function symbols and marked
function symbols.

– One can strip off context consists of constructors and higher-order variables
around defined symbols when building dependency pairs.

Combining the following method with the dependency method gives more
power to proving termination:

– The dependency graph refinement is helpful in the higher-order case as well
to determine that the application of certain reduction steps never leads to
an infinite reduction.

However, the inverse of Lemma 3 does not satisfy. The result of this paper
is applicable only if HRSs are strongly linear or non-nested unfortunately. It is
strongly desirable to find weaker conditions.

Acknowledgment

We thank anonymous referees for their useful suggestions. This work is partly
supported by MEXT. KAKENHI #15500007.

References

1. P.B. Andrews, Resolution in type theory, Journal of Symbolic Logic, Vol.36, No.3,
pp.414–432, 1991.

2. T. Arts and J. Giesl, Automatically proving termination where simplification
orderings fail, in Proc. 22nd International Colloquium on Trees in Algebra and
Programming, CAAP’97, In LNCS, vol.1214, pp.261–272, Springer-Verlag, 1997.

3. T. Arts, Automatically proving termination and innermost normalization of term
rewriting system Ph.D. thesis, Utrecht University, The Netherlands, 1997.

4. T. Arts and J. Giesl, Termination of term rewriting using dependency pairs, The-
oretical Computer Science, Vol.236, pp.133–178, 2000.

5. H. Barendregt, Lambda calculi with types, in Handbook of Logic in Computer
Science, ed.Abramsky el al., Oxford University Press, 1993.

6. F. Baader and T. Nipkow, Term rewriting and all that, Cambridge University
Press, 1998.

7. J.-Y. Girard, Interprétation fonctionnelle et élimination des coupures
del’arithmétique d’ordre supérieur, Ph.D. thesis, University of Paris VII, 1972.

8. G. Huet and J.-J. Lévy, Computations in orthogonal rewriting systems, I and II, in
Computational Logic, Essays in Honor of Alan Robinson, (The MIT Press, 1991),
396–443, 1991.

9. M. Iwami, M. Sakai, and Y. Toyama, An improved recursive decomposition or-
dering for higher-order rewrite systems, IEICE Trans. Inf. & Syst., Vol.E-81-D,
pp.988–996, 1998.

10. M. Iwami and Y. Toyama, Simplification ordering for higher-order rewrite systems,
IPSJ Trans. on Programming, Vol.40, No.SIG 4 (PRO 3), pp.1–10, 1999.

11. J.-P. Jouannaud and A. Rubio, Rewrite orderings for higher-order terms in η-long
β-normal form and the recursive path ordering, Theoretical Computer Science,
Vol.208, pp.33–58, 1998.

12. J.-P. Jouannaud, A. Rubio, The higher-order recursive path ordering, in Proc. of
IEEE Symposium on Logic in Computer Science, Trento, Italy, 1999.

13. H. Kasuya, M. Sakai and K. Agusa, Descendants and head normalization of higher-
order rewrite systems, in 6th International Symposium on Functional and Logic
Programming, , FLOPS2002, in LNCS 2441, pp.198–211, 2002.

14. K. Kusakari, On proving termination of term rewriting systems with higher-order
variables, IPSJ Trans. on Programming, Vol.42, No.SIG 7 (PRO 11), pp.35–45,
2001.

15. K. Kusakari, Higher-order path orders based on computability, IEICE Trans. on
Inf. & Syst., Vol.E87-D, No.2, pp.352–359, 2004.

16. D. Miller, A logic programming language with lambda-abstraction, function vari-
ables, and simple unification, Journal of Logic and Computation, Vol.1, No.4,
pp.497–536, 1991.

17. O. Lysne and J. Piris, A termination ordering for higher order rewrite systems,
in Proc. 6th International Conference on Rewriting Techniques and Applications,
RTA’95, in LNCS, Vol.914, pp.26–40, 1995.

18. C. Loŕıa-Sáenz and J. Steinbach, Termination of combined (rewrite and λ-calculus)
systems, in Proc. 3rd International Workshop on Conditional Term Rewriting
Systems, CTRS’92, in LNCS, Vol.656, pp.143–147, 1993.

19. T. Nipkow, Higher-order critical pairs, in Proc. 6th annual IEEE Symposium on
Logic in Computer Science, pp.342–349, 1991.

20. F. Raamsdonk, On termination of higher-order rewriting, in Proc. of 12th Int.
Conf. on Rewriting Techniques and Applications, in LNCS, Vol.2051, pp.261–275,
2001.

21. M. Sakai, Y. Watanabe and T. Sakabe, An extension of dependency pair method for
proving termination of higher-order rewrite systems, IEICE Trans. on Information
and Systems, Vol.E84-D, No.8, pp.1025–1032, 2001.

22. W.W. Tait, Intensional interpretation of functionals of finite type, Journal of
Symbolic Logic, Vol.32, pp.198–212, 1967.

2, i(Y)

1, g(a)

2, f(λx.i(x))

3, i(a)

4, g(a)

〈g#(a), f#(λx.i(x))〉

〈i#(X), g#(X)〉

〈g#(a), f#(λx.i(x))〉
...

〈g#(a), i#(Y))〉

〈g#(a), i#(Y))〉

{Y 7→ a}

(a)

3, g(Y)

1, g(a)

2, f(λx.i(x))

4, g(a)

2, i(Y)

...

{Y 7→ a}

〈i#(X), g#(X)〉

〈g#(a), i#(Y))〉

〈g#(a), i#(Y))〉

〈g#(a), f#(λx.i(x))〉

〈g#(a), f#(λx.i(x))〉

(b)

Fig. 2. The dependency forest of the minimal non-terminating sequence in Example 3
and 5 (Nodes whose third items are Λ (>Λ) are drawn by solid (dashed) lines)

apply

λx.f a 2

g x

x

→
f

g a 2

a 11
6

6

Fig. 3. Descendants

1, g(Y, Y) 1, f(b, λx.g(x, x))

〈g#(a, a),

{Y 7→ b}

1, b

2, g(b, b)

5, g(b, Z)

...
...

5, b

4, a

3, a

5, f(a, λx.g(b, x))

〈b#, a#〉

〈b#, a#〉

〈g#(a, a), b#〉 〈g
#(a, a), f#(a, λx.g(b, x))〉

g#(b, Z)〉

(a)

g#(W)〉

1, f(λxy.x(y))

...

4, g(a)

3, f(λxy.h(x(a), y))

〈f#(λxy.F (λz.x(z), y)),

〈g#(a),

2, g(a)

〈f#(λxy.F (λz.x(z), y)),

f#(λxy.h(x(a), y))〉

g#(W)〉

(b)

Fig. 4. The dependency forest of the minimal non-terminating sequence in Example 7
and 8 (Nodes whose third items are Λ (>Λ) are drawn by solid (dashed) lines. Nodes
and edges removed from the graph are drawn by dotted lines)

· · ·

1, f(g(λx.h(f(x))))

2, f(g(λx.h(h(f(x)))))

{Y 7→ g(λx.h(h(f(x))))}

3, f(g(λx.h(h(h(f(x))))))

1, f(Y)

{Y 7→ g(λx.h(h(h(f(x)))))}

...

Fig. 5. The dependency forest of the minimal non-terminating sequence in Example 10

1, i(X)

〈i#(X), g#(X, X)〉

...

{X 7→ h(λx.i(x))}〈i#(X), g#(X, X)〉

〈i#(X), g#(X, X)〉

...

{X 7→ h(λx.i(x))}

1, i(h(λx.i(x)))

2, g(h(λx.i(x)), h(λx.i(x)))

3, i(h(λx.i(x)))

4, g(h(λx.i(x)), h(λx.i(x)))

6, g(h(λx.i(x)), h(λx.i(x)))

5, i(h(λx.i(x)))

Fig. 6. The dependency forest of the minimal non-terminating sequence in Example 11

