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Abstract. The completeness (i.e. confluent and terminating) property is an important concept
when using a term rewriting system (TRS) as a computational model of functional programming
languages. Knuth and Bendix have proposed a procedure known as the KB procedure for
generating a complete TRS. A TRS cannot, however, directly handle higher-order functions
that are widely used in functional programming languages. In this paper, we propose a higher-
order KB procedure that extends the KB procedure to the framework of a simply-typed term
rewriting system (STRS) as an extended TRS that can handle higher-order functions. We discuss
the application of this higher-order KB procedure to a certification technique called inductionless
induction used in program verification, and its application to fusion transformation, a typical
kind of program transformation.
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1 Introduction

A term rewriting system (TRS) can be used as
a computational model of functional programming
languages, in which the introduction of higher-
order functions consisting of arguments and values
achieves a high level of abstraction and increases
the expressive power. A TRS, however, cannot di-
rectly handle higher-order functions, which makes
it difficult to use accumulated results in the auto-
matic verification of functional programs. Against
this background, research on higher-order rewriting
systems that can handle higher-order functions has
been actively studied. This research, however, has
come to place a priority on theoretical interests re-
sulting in formalizations having excessive expressive
power when viewed as a model of functional pro-
gramming languages. With this in mind, we pro-
pose a simply-typed term rewriting system (STRS)
as a higher-order rewriting system having sufficient
expressive power for giving operational meaning to
functional programming languages while still being
easy to handle theoretically [16].

The completeness (i.e. confluent and terminat-
ing) property is an important concept when using
a TRS as a computational model of functional pro-
gramming languages. Knuth and Bendix have pro-
posed a procedure known as the KB procedure for
generating a complete TRS [14]. This KB proce-
dure finds a complete TRS equivalent to the given
set of first-order equations.

In this paper, we propose a higher-order KB pro-

cedure and demonstrate its validity. The STRS can
be made to handle higher-order functions simply by
slightly easing the restrictions on the data structure
of first-order terms. As a consequence, many of the
theoretical properties that hold for the first-order
framework can be directly transported to a higher-
order one. Indeed we can achieve a higher-order KB
procedure. We also examine the application of this
higher-order KB procedure that we have designed to
inductionless induction and fusion transformation.

Most of the data structures used in functional
programming are inductive structures such as list
and tree structures. For this reason, most prop-
erties that a program must guarantee are formal-
ized as inductive theorems, and as a result, a
method for automatically proving inductive theo-
rems is essential for establishing an automatic pro-
gram verification method. Various methods for au-
tomatically proving inductive theorems have been
proposed in the research of TRS as a computa-
tional model of functional programming languages
[6, 7, 10, 15, 18, 19, 21]. In this regard, we present
the application of a higher-order KB procedure to
the results in [18], which extends the results of in-
ductionless induction in [15, 21] to an STRS frame-
work.

Programming using a functional programming
language begins with the definition of basic func-
tions that can then be combined to define more
complex functions. Most basic functions are de-
fined in the form of a data structure having an in-
ductive structure such as a list or tree. When com-
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bining such functions, a large amount of interme-
diate data inherent in those data structures can be
generated, and a program that generates such in-
termediate data is generally weak in terms of com-
putational efficiency. It is therefore desirable that
a program of this type be converted to one that
does not generate such intermediate data so that
program efficiency can be improved. This kind of
program conversion is called a fusion transforma-
tion [8, 20, 22]. Bellegarde has proposed a fusion
transformation based on the KB procedure [5]. This
technique imposes the restriction that fused terms
must be linear, and it does not directly use the KB
procedure. Ito, Kusakari, and Toyama have shown
that fusion transformation of a TRS can be per-
formed even with direct use of the KB procedure,
and have also shown by experiment that the lin-
earity restriction on fused terms can be removed
[11]. These results, however, pertain to a first-order
TRS framework: they cannot handle higher-order
functions. In the study presented here, we examine
by experiment the fusion transformation of higher-
order functions using a higher-order KB procedure.

2 Preliminaries

In this section, we introduce some notions for ab-
stract reduction systems (ARSs), untyped term
rewriting systems (UTRSs), simply-typed term
rewriting systems (STRSs), and many-sorted term
rewriting systems (MS-TRSs), needed later on. We
assume that the reader is familiar with notions of
term rewriting systems [3].

2.1 Abstract Reduction Systems

An abstract reduction system (ARS) R is a pair
〈A,→〉 where A is a set and → is a binary rela-
tion on A. The transitive-reflexive closure of a bi-
nary relation → is denoted by ∗→, the transitive clo-
sure is denoted by +→, and the transitive-reflexive-
symmetric closure is denoted by ∗↔.

Let R = 〈A,→〉 be an ARS. An element a ∈ A
is said to be a normal form if there exists no
b ∈ A such that a → b. We denote all nor-
mal forms in R by NF (R). An ARS R is said
to be weakly normalizing, denoted by WN(R), if
∀a ∈ A. ∃b ∈ NF (R). a

∗→ b; to be strongly nor-
malizing (terminating), denoted by SN(R), if there
exists no infinite sequence a0 → a1 → · · · ; to
be confluent, denoted by CR(R), if a1

∗← a
∗→ a2

⇒ ∃b ∈ A. a1
∗→ b

∗← a2 for all a, a1, a2 ∈ A.

2.2 Untyped Term Rewriting Sys-
tems

Untyped term rewriting systems (UTRSs) intro-
duced in [16]1 represent a basis for various rewrit-
ing systems: simply-typed term rewriting system,
many-sorted term rewriting system, and traditional
term rewriting system. In this subsection, we intro-
duce some notions of UTRSs needed later on.

Let Σ be a signature, that is, a finite set of func-
tion symbols, which are denoted by F, G, . . .. Let V
be an enumerable set of variables with Σ ∩ V =
∅. Variables are denoted by x, y, z, f, . . .. An
atom is a function or variable symbol denoted by
a, a′, . . .. The set T (Σ,V) of (untyped) terms con-
structed from Σ and V is the smallest set such that
a(t1, . . . , tn) ∈ T (Σ,V) whenever a ∈ Σ ∪ V and
t1, . . . , tn ∈ T (Σ,V). If n = 0, we write a instead
of a(). Identity of terms is denoted by ≡. For
s ≡ a(s1, . . . , sn), we often write s(t1, . . . , tm) in-
stead of a(s1, . . . , sn, t1, . . . , tm). We define the root
symbol by root(a(t1, . . . , tn)) = a. V ar(t) is the set
of variables in t. A term is said to be closed if no
variable occurs in the term. The set of closed terms
is denoted by T (Σ). The size |t| of t is the number
of function symbols and variables in t.

A substitution θ is a mapping from variables to
terms. Each substitution θ is naturally extended to
a mapping from terms to terms, denoted by θ̂, as fol-
lows: θ̂(F (t1, . . . , tn)) = F (θ̂(t1), . . . , θ̂(tn)) if F ∈
Σ; θ̂(z(t1, . . . , tn)) = a′(t′1, . . . , t

′
m, ˆθ(t1), . . . , θ̂(tn))

if z ∈ V with θ(z) = a′(t′1, . . . , t
′
m). For simplicity,

we identify θ and θ̂. We write tθ instead of θ(t).
A context is a term which has exactly one special

symbol ¤, called hole, at a leaf position. A suffix
context is a term which has the symbol ¤ at the
root position. For example, F (0, ¤) and F (¤, xs)
are contexts, ¤(0) and ¤(0, Nil) are suffix contexts,
and ¤ is a context and a suffix context. For a
context C[ ] (a suffix context S[ ]), C[t] (S[t]) de-
notes the result of placing t in the hole of C[ ] (S[ ]).
For example, C[t] ≡ a(t, t′) for C[ ] ≡ a(¤, t′), and
S[a(t)] ≡ a(t, t′) for S[ ] ≡ ¤(t′). A term t′ is said
to be a subterm of a term t if there exists a context
C[ ] such that t ≡ C[t′]. We denote by Sub(t) all
subterms of t. A term s is said to be an instance
of a term t if there exists a substitution θ such that
s ≡ tθ.

A rule is a pair (l, r) of terms such that V ar(l) ⊇
V ar(r). We write l → r instead of (l, r). For a set
R of rules, the reduction relation s→

R
t is defined as

s ≡ C[S[lθ]] and t ≡ C[S[rθ]] for some l → r ∈
R, C[ ], S[ ] and θ. We often omit the subscript

1In [16], UTRSs were called term rewriting systems with
higher-order variables (TRS-HVs). Since there exists no
“higher-order variable” in untyped systems, we use UTRS
in the paper.
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R whenever no confusion arises. An untyped term
rewriting system (UTRS) is an abstract reduction
system 〈T (Σ,V),→

R
〉, where R is a set of rules. We

often denote an UTRS 〈T (Σ,V),→
R
〉 by R. If t has

a unique normal form in an UTRS R we denote it
by t↓R. Note that if we don’t use suffix contexts in
the definition of the reduction relation, UTRSs are
too restrictive to model of functional programming
languages. For instance, the following UTRS is not
confluent without suffix contexts.

{
I(x) → x

App(f, x) → f(x)

In the system, we have

I(f, x) ← App(I(f), x) → App(f, x) → f(x).

However, to reduce I(f, x) to f(x) we need to apply
the first rule in the suffix context ¤(x) which has
the hole at a non-leaf position. Finally we give an
example of UTRS which is a representation of the
Map-function:

{
Map(f, Nil) → Nil

Map(f, x :: xs) → f(x) :: Map(f, xs)

Note that we use the standard representation for list
structures by symbols Nil and Cons, and abbrevi-
ate Cons(x, xs) to x :: xs throughout the paper.
Then we have the following reduction sequence.

Map(F, F (0) :: 0 :: Nil)
→
R

F (F (0)) :: Map(F, 0 :: Nil)

→
R

F (F (0)) :: F (0) :: Map(F, Nil)

→
R

F (F (0)) :: F (0) :: Nil

2.3 Simply-Typed Term Rewriting
Systems

We introduced simply-typed term rewriting systems
(STRSs), which are defined as UTRSs with simply-
type constraints [16].

A set of basic types (sort) is denoted by B. The
set T of simple-types is generated from B by the
constructor → as T ::= B | (T → T ). To minimize
the number of parentheses, we assume that → is
right-associative, and omit redundant parentheses.
A type attachment τ is a function from Σ∪V to T .
A term a(t1, . . . , tn) has a type β if τ(a) = (α1 →
(· · · → (αn → β) · · · )) and each ti has the type αi.
A term t is said to be a simply-typed term if it has a
simple-type. We denote all simply-typed terms by
Tτ (Σ,V), and denote all simply-typed terms with
a type α by Tα(Σ,V). A simply-typed term t is
said to be ground if t is closed and of basic type.

We denote all ground terms by TB(Σ). We use Vh

to stand for the set of higher-order variables (i.e.
Vh = {x ∈ V | τ(x) ∈ T \ B}).

To keep the type consistency, we assume that
τ(x) = τ(θ(x)) for all x ∈ V and substitutions
θ. We also prepare the hole ¤α with a simple
type α, and for each context C[ ] (suffix context
S[ ]) with a hole ¤α we assume that τ(t) = α
whenever we denote C[t] (S[t]). We define or-
der of types by ord(α) = 1 if α ∈ B; ord(α) =
max(1 + ord(α1), ord(α2)) if α = α1 → α2. We no-
tice that each ti is of basic type in a simply-typed
term a(t1, . . . , tn) whenever ord(τ(a)) ≤ 2.

A simply-typed rule is a rule l → r such
that τ(l) = τ(r). A simply-typed term rewrit-
ing system (STRS) is an abstract reduction sys-
tem 〈Tτ (Σ,V),→

R
〉, where R is a set of simply-typed

rules. We often denote an STRS 〈Tτ (Σ,V),→
R
〉 by

R. For example, the Map-function is also rep-
resented by the STRS, which is the UTRS pre-
sented in the previous subsection with τ(Nil) = L,
τ(::) = N → L → L and τ(Map) = (N →
N) → L → L. For an STRS 〈Tτ (Σ,V),→

R
〉, we

define GNF (R), GWN(R), GSN(R) and GCR(R)
as NF (R′), WN(R′), SN(R′) and CR(R′) in the
ARS R′ = 〈TB(Σ),→

R
〉, respectively. A simply-typed

equation is a pair (e1, e2) of simply-typed terms
e1, e2 ∈ Tτ (Σ,V) such that τ(e1) = τ(e2). We write
e1 = e2 instead of (e1, e2). For any set E of equa-
tions, →

E
is defined as similar to reduction relation.

According to the traditional way, we partition
off Σ into D and C, called by defined symbols and
constructors, respectively. A simply-typed term
t ∈ Tτ (C,Vh) is said to be a pseudo-value if any
variable occurrence is at a leaf position. We denote
all pseudo-values by PV al(C,Vh). A STRS R is said
to be strongly quasi-reducible, denoted by SQR(R),
if any basic-typed term F (t1, . . . , tn) is reducible by
R whenever t1, . . . , tn ∈ PV al(C,Vh) and F ∈ D.

Simply-typed terms s and t are unifiable if there
exists a substitution θ such that sθ ≡ tθ. Then θ
is said to be a unifier of s and t. A unifier θ of
s and t is said to be a most general unifier if for
any unifier θ′ of s and t there exists θ′′ such that
θ′ = θ′′◦θ. Let l1 → r1 and l2 → r2 be simply-typed
rules, and suppose these rules have no variables in
common. If l2 ≡ C[l′2], l′2 6∈ V, and l′2 and l1 are
unifiable with the most general unifier θ, then the
pair 〈C[r1]θ, r2θ〉 is called a critical pair.

Finally we introduce a result for proving termi-
nation of STRSs.

Proposition 2.1 [16] Let R be an STRS. R is ter-
minating iff there exists a reduction order > such
that ∀l → r ∈ R. l > r. Here a reduction order
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is a well-founded order closed under contexts and
substitutions.

Definition 2.2 [17] A precedence B is a strict
partial order on Σ. For any simply-typed terms
s ≡ a(s1, . . . , sn) and t ≡ a′(t1, . . . , tm), we define
s >lpo t if τ(s) and τ(t) have the same type when-
ever all basic types are identified, and one of the
following properties holds:

• τ(s) ∈ B, aBa′ and for all j either s >lpo tj or
∃i. si ≥lpo tj ,

• a = a′, [s1, . . . , sn] >lex
lpo [t1, . . . , tm] and for all

j either s >lpo tj or ∃i. si ≥lpo tj ,

• there exists k such that ∃i. si ≥lpo a′(t1, . . . , tk)
and ∀j > k. ∃ij . sij ≥lpo tj .

Here ≥lpo is defined as >lpo ∪ ≡.

Proposition 2.3 [17] The lexicographic path or-
der >lpo is a reduction order.

2.4 Many-Sorted Term Rewriting
Systems

We introduced many-sorted term rewriting systems
(MS-TRSs), which are defined as UTRSs with sort
constraints.

A set of sort is denoted by Sort, and the set
of non-empty sequences of sorts is denoted by
Sort+. We often denote α1, . . . , αn, β ∈ Sort+ by
α1 × · · · × αn → β. A sort attachment st is a func-
tion from Σ ∪ V to Sort+ such that st(x) ∈ Sort
for any x ∈ V. A term a(t1, . . . , tn) is of β ∈ Sort+

if st(a) = α1 × · · · × αn → β and each ti is of αi.
A term a(t1, . . . , tn) is said to be a sorted term if it
is of α for some α ∈ Sort+. We denote all sorted
terms by Tst(Σ,V). We restrict substitutions and
contexts to sort preserving ones. A many-sorted
rule is a rule l → r such that st(l) = st(r). A
many-sorted term rewriting system (MS-TRS) is an
abstract reduction system 〈Tst(Σ,V),→

R
〉, where R

is a set of many-sorted rules. The notion of critical
pair is defined as in STRSs. Note that usual first-
order term rewriting systems correspond to MS-
TRSs with |Sort| = 1.

3 Higher-Order Knuth-Bendix Pro-
cedure

In order to solve word problems in universal alge-
bras, Knuth and Bendix proposed a completion pro-
cedure known as the KB procedure [14]. The KB
procedure attempts to transform a finite set of equa-
tions into a complete TRS, which serves as a deci-
sion procedure for word problems. In this section,

we propose a higher-order KB procedure based on
the formulation in [4], and prove its soundness.

Procedure 3.1 (Higher-Order KB Procedure)

Input: A set E of equations and a reduction
order >.

Output: A complete STRS R that is logically
equivalent to E.

(1) R := ∅

(2) If E = ∅ then return R; otherwise repeat
the following (3)–(9).

(3) Pick an equation s = t (or t = s) from E
such that s > t; if none exists, terminate
with failure.

(4) R := {l → r ↓R′ | l → r ∈ R} where
R′ = {s → t} ∪ R

(5) Add to E all critical pairs between s → t
and each rule in {s → t} ∪ R.

(6) Remove all rules from R whose left-hand
side contains an instance of s.

(7) R := R ∪ {s → t}

(8) E := {e1 ↓R = e2 ↓R | e1 = e2 ∈ E}

(9) Remove any equation in E whose reduced
sides are identical.

We note that for an STRS R, the completeness
property is defined as CR(R) and SN(R), and log-
ically equivalent to E means that ∗↔

R
= ∗↔

E
.

In the following, we use a glass-replacement puz-
zle to explain the solution to a word problem using
a higher-order Knuth-Bendix procedure (HKB pro-
cedure).

Assume a certain sequence of sake, whisky, and
beer glasses. This row of glasses may be replaced
according to the following glass-replacement rules.

• A sake glass may be inserted to the left of a
beer glass. Conversely, a sake glass having a
beer glass to its right may be removed.

• A sake glass and whisky glass may be added to
the left and right, respectively, of an appropri-
ately selected contiguous glasses. The reverse
operation may also be performed.

For example, the following changes are possible. In
the following figure, sake, whisky, and beer glasses
are indicated by S, W , and B, respectively.
We consider the following problems:
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S BS S W B S B S

(1) Can the sake-sake-whisky-beer sequence be re-
placed by the sake-sake-beer-whisky sequence?

(2) Can the sake-whisky-whisky-whisky sequence
be replaced by the sake-whisky-whisky-beer se-
quence?

The answer to problem (1) is “yes” and the answer
to problem (2) is “no”. The answer to (1) can be
obtained by actually searching for a valid replace-
ment procedure. In this case, the procedure can be
found by a simple trial-and-error process. The dif-
ficulty arises when the answer is “no” as in problem
(2). Because there is an infinite number of proce-
dures for replacing these glasses, inspecting all of
them would take forever.

This problem can be formalized as a typical word
problem. We denote sake, whisky, and beer glasses
as S, W , and B, respectively, and the type of these
symbols as S,W,B : ∗ → ∗, where ∗ is a ba-
sic type. Now, if we introduce the function sym-
bol ⊥ : ∗ to represent the end of the glass se-
quence, then the state of glasses arranged in the or-
der of sake-sake-beer-whisky-beer can be expressed
as S(S(B(W (B(⊥))))). In this formalization, the
above two replacement rules can be given by the
following set of equalities denoted by E.

E =
{

S(B(y)) = B(y)
S(x(W (y))) = x(y)

Here, x, y are variables. We note in particular that
variable x used in the second rule has the function
type ∗ → ∗, which means that it is a higher-order
variable. The two problems described above can
therefore be formalized by the following term-based
word problem.

(1) S(S(W (B(⊥)))) ∗↔
E

S(S(B(W (⊥)))) ?

(2) S(W (W (W (⊥)))) ∗↔
E

S(W (W (B(⊥)))) ?

We attempt to solve these two word problems us-
ing an HKB procedure. If we use the lexicographic
path order (Def. 2.2) as a reduction order (in this
example, there is no need to give precedence), we
obtain the following complete STRS denoted by R.

R =





S(B(y))) → B(y)
S(x(W (y))) → x(y)

B(W (y))) → B(y)

The top two rewrite rules here are obtained by
giving direction to the set E of rules, and the last
rule is obtained by giving direction to the added

critical pair. If we now try to solve the above word
problems using this STRS, we obtain the following
results.

(1) S(S(W (B(⊥))))↓= B = S(S(B(W (⊥))))↓

(2) S(W (W (W (⊥)))) ↓= W (W (⊥))
6= W (B(⊥)) = S(W (W (B(⊥))))↓

Accordingly, as the normal forms of the two glass se-
quences in problem (1) agree, the answer is “yes”;
and as they do not agree in problem (2), the an-
swer is “no”. These results also indicate that the
formalization denoted by S(x(W (y))) = x(y) is not
possible in a first-order TRS, which points to the
difficulty of directly handling the appearance of ar-
bitrary contiguous glasses in the glass sequence. Al-
though some readers may think that the equality
S(x(W (y))) = x(y) can be represented in a first-
order setting by substituting the closed terms of the
type ∗ → ∗ for the higher-order variable x, this ap-
proach generates an infinite system because there
exist infinite terms of the type ∗ → ∗. Using an
STRS that can handle terms that include higher-
order variables can suppress such problems.

The rest of this section demonstrates the validity
of our HKB procedure, or more specifically, that the
STRS R obtained as output is logically equivalent
to the equality set E given as input, and complete
as well. The proof is given by dropping into a first-
order framework using currying [13].

Definition 3.2 For any simple types α and β, we
prepare the special constant @α,β . We define Σ@ =
Σ ∪ {@α,β | α, β ∈ T }. For any simple type α, we
prepare the sort σα, and define SortT = {σα | α ∈
T }. For a type attachment τ , we define the sort
attachment stτ by stτ (@α,β) = σα→β × σα → σβ

and stτ (a) = στ(a) for any a ∈ Σ ∪ V.
For any simply-typed term t ∈ Tτ (Σ,V), we in-

ductively define the sorted term t@ ∈ Tstτ (Σ@,V)
as follows:

• a@ = a for any a ∈ Σ ∪ V

• a(t1, . . . , tn)@ = @α,β(a(t1, . . . , tn−1)@, t@n )
if n ≥ 1 and τ(a(t1, . . . , tn−1)) = α → β

We notice that Tstτ (Σ@,V) = {t@ | t ∈ Tτ (Σ,V)}.
We naturally extend the notion over substitutions
as θ@(x) = (θ(x))@, and over sets of pairs (like
equations or rules) as E@ = {(s@, t@) | (s, t) ∈ E}.

Lemma 3.3 The equality C[S[tθ]]@ ≡
C@[S@[t@θ@]] holds for any term t, context
C[ ], suffix context S[ ] and substitution θ such that
C[S[tθ]] has a simple type.
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Proof. Firstly we prove (tθ)@ ≡ t@θ@ by induc-
tion on |t|. Let t ≡ a(t1, . . . , tn). The case
n = 0 is trivial. Suppose that n > 0. Let
u ≡ a(t1, . . . , tn−1) and τ(u) = α → β. Then (tθ)@

≡ (u(tn)θ)@ ≡ ((uθ)(tnθ))@ ≡ @α,β((uθ)@, (tnθ)@)
≡ @α,β(u@θ@, t@n θ@) ≡ @α,β(u@, t@n )θ@ ≡ t@θ@.

We can also prove S[tθ]@ ≡ S@[(tθ)@] by in-
duction on S[ ], and C[S[tθ]]@ ≡ C@[S[tθ]@] by
induction on C[ ]. Hence we obtain C[S[tθ]]@ ≡
C@[S@[t@θ@]]. ¤

The following properties directly follows from this
lemma.

Lemma 3.4

(i) For any STRS R, s→
R

t ⇐⇒ s@ →
R@

t@.

(ii) Let P be all critical pairs between l1 → r1

and l2 → r2, Q be all critical pairs between
l@1 → r@

1 and l@2 → r@
2 . Then Q = P@.

(iii) A subterm of a simply-typed term s is an in-
stance of a simply-typed term t if and only if
a subterm of the sorted term s@ is an instance
of the sorted term t@.

Theorem 3.5 Let E be a set of simply-typed equa-
tions and > be a reduction order. If the HKB pro-
cedure applied to E and > terminates successfully
with output R, then R is a finite complete STRS
that is logically equivalent to E.

Proof. The HKB procedure (Procedure 3.1) cor-
responds to the first-order KB procedure presented
in [4]. We define >′ by s@ >′ t@ ⇐⇒ s > t.
Then >′ is a reduction order on Tst(Σ@,V). Hence,
thanks to Lemma 3.4(ii,iii), the first-order KB pro-
cedure with sort constraints applied to E@ and >′

terminates successfully with output R@2. Thanks
to Lemma 3.4(i), STRS R is finite, complete and
logically equivalent to E. ¤

This proof shows that the STRS can be viewed
within the framework of a curried TRS, which is a
first-order TRS with sort constraints. Nevertheless,
there are three reasons for using STRS:

• First, for all terms in a curried TRS, all appear-
ances at internal nodes take on @α,β , which
only classify type information. This is an ex-
ceptionally strong restriction in the proof for
termination. In particular, recursive path or-
der and lexicographic path order, as well as the
dependency pair method (strictly speaking, the

2The correctness of the KB procedure in [4] is proved on
one-sorted TRSs (first-order TRSs). These proof still holds
on many-sorted TRSs, because many-sorted TRSs has the
subject property (s→

R
t ⇒ st(s) = st(t)).

argument filtering method) cannot be used in
most cases (cf. [16, 17]).

• The second reason concerns the problem of ex-
ecution efficiency. It can be seen from a simple
calculation that |t@| = 2|t|−1. In other words,
the curried term t@ has almost twice the re-
dundancy of term t. That is a fatal problem in
implementation.

• The third reason relates to the problem of read-
ability. Let’s examine actual definitions for ad-
dition in both STRS and curried TRS (omit-
ting the subscript of @).

{
Add(x, 0) → 0

Add(x, S(y)) → S(Add(x, y))




@(@(Add, x)), 0) → 0
@(@(Add, x), @(S, y))

→ @(S, @(@(Add, x), y))

Clearly STRS on the upper is more readable.
While TRS is widely used in research of al-
gebraic specifications, the specifications them-
selves are to be prepared by people regardless
of how far research advances. This calls for
a specific description language with high read-
ability to avoid human errors. For this reason,
STRS is superior to curried TRS as an alge-
braic specification language.

4 Inductionless Induction

The concept of inductive theorems is extremely im-
portant in practical applications. In actuality, most
data structures used in functional programming are
inductive structures such as list and tree structures.
As a result, most properties that a program must
guarantee are formalized as inductive theorems. For
example, consider the following STRS R:





App(Nil, ys) → ys
App(x :: xs, ys) → x :: App(xs, ys)

Rev(Nil) → Nil
Rev(x :: xs) → App(Rev(xs), x :: Nil)

F (Nil, ys) → ys
F (x :: xs, ys) → F (xs, x :: ys)

Frev(xs) → F (xs,Nil)

Both Rev and Frev give a definition of a list-
reverse function, but from the viewpoint of
execution efficiency, Frev results in a more effi-
cient implementation. The transformation from
Rev to Frev is a typical example of improving
program efficiency. The problem here, however,
is that Rev(xs) ∗↔

R
Frev(xs) does not hold in R.

Why should this be the case despite the fact that
Rev([a1, . . . , an]) ∗↔

R
[an, . . . , a1]

∗↔
R

Frev([a1, . . . , an])
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for any list [a1, . . . , an]? The answer is that xs,
which is given as input to Rev, Frev, is a variable,
which prevents a specific list from being evaluated.
In reality, the property that Rev(t) ∗↔

R
Frev(t) is

important for all input t that can be considered.
This is the concept of inductive theorems. Fur-
thermore, to enable an equality like Rev = Frev
to be handled in a higher-order framework, it
is also necessary to incorporate the concept of
extensionality in inductive theorems. We here
introduce the definition of inductive theorems in
STRSs given in [18].

Definition 4.1 [18] Let R be a set of equations.
An equation s = t is said to be a primitive in-
ductive theorem in R, denoted by R `pind s = t,
if Sg[sθc]

∗↔
E

Sg[tθc] for all ground suffix context

Sg[ ] and closed substitution θc (i.e.∀x ∈ V ar(s) ∪
V ar(t). xθc ∈ Tτ (Σ)). We define R `1

pind s = t by
R `pind s = t; R `n+1

pind s = t by R′ `pind s = t
where R′ = {u = v | R `n

pind u = v}. An equa-
tion s = t is said to be an inductive theorem in
R, denoted by R `ind s = t, if R `n

pind s = t for
some n. We also denote R `ind E (R `pind E) if
R `ind s = t (R `pind s = t) for all s = t ∈ E.

In general, automated reasoning for inductive
theorems is not so easy. To overcome the difficulty,
the inductionless induction method, which provides
a mechanical support for inductive theorems, was
proposed by Musser [19], and extended by Huet and
Hullot [10]. Toyama made clear an essence of the
method [21]. Recently, Kusakari, Sakai and Sakabe
extended the method to higher-order settings [18].

Proposition 4.2 [18] Let R and R′ be STRSs, and
E be a set of equations. If all of the following prop-
erties hold then R `pind E and R `ind E.

(i) ∗↔
R∪E

⊆ ∗↔
R′

in TB(Σ)

(ii) GWN(R)

(iii) GCR(R′)

(iv) GNF (R) ⊆ GNF (R′)

Example 4.3 Consider the following STRS R.

R =





Map(f, Nil) → Nil
Map(f, x :: xs) → f(x) :: Map(f, xs)

App(Nil, ys) → ys
App(x :: xs, ys) → x :: App(xs, ys)

We suppose that Σ = {0, S, Nil, ::, App, Map},
τ(0) = N , τ(S) = N → N , τ(Nil) = L, τ(::
) = N → L → L, τ(App) = L → L → L and
τ(Map) = (N → N) → L → L.

Based on Proposition 4.2, we prove that the fol-
lowing equation is an inductive theorem.

Map(f, App(xs, ys)) = App(Map(f, xs),Map(f, ys))

Let R′ be the union of R and the above equation.
Then all conditions in Proposition 4.2 hold, and
hence we succeed to prove that the equation is an
inductive theorem in R.

The above example is relatively easy because the
generated STRS R’ is ground confluent. However,
this is in general not always the case. The difficulty
can be overcome by using the HKB procedure.

Example 4.4 Consider the following STRS R.

R =





Add(0, y) → y
Add(S(x), y) → S(Add(x, y))

One(0) → S(0)
One(S(x)) → S(0)
Len(Nil) → 0

Len(x :: xs) → S(Len(xs))
Sum(Nil) → 0

Sum(x :: xs) → Add(x, Sum(xs))
Map(f, Nil) → Nil

Map(f, x :: xs) → f(x) :: Map(f, xs)

We suppose that Σ = {0, S,Nil, ::
, Add, One, Len, Sum, Map}, τ(0) = N ,
τ(S) = N → N , τ(Nil) = L, τ(::) = N → L → L,
τ(Add) = N → N → N , τ(One) = N → N ,
τ(Len) = L → N , τ(Sum) = L → N and
τ(Map) = (N → N) → L → L.

Based on Proposition 4.2, we prove that the fol-
lowing equation is an inductive theorem.

Sum(Map(One, xs)) = Len(xs)

Firstly, as similar to Example 4.3, let R′ be the
union of R and the above equation. However, R′ is
not confluent. In fact, we have:

Sum(Map(One, x :: xs)) → Len(x :: xs)
→ S(Len(xs))

Sum(Map(One, x :: xs))

→ Sum(One(x) :: Map(One, xs))
→ Add(One(x), Sum(Map(One, xs)))
→ Add(One(x), Len(xs))

Since S(Len(xs)) and Add(One(x), Len(xs)) are
distinct normal forms, STRS R′ is not confluent.

By the HKB procedure, we can overcome the
problem. Indeed, we succeed to transform R′ ∪
{Add(x, 0) → x} to a complete STRS. We note
that we prove the lemma Add(x, 0) = x together
with Sum(Map(One, xs)) = Len(xs) because our
HKB implementation could not transform R′ to a
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complete STRS. As a reduction order, we use the
lexicographic path order (Definition 2.2) with the
precedence Map B Len BSum B Add B OneB ::
BNil B S B 0. Then the HKB procedure returns
the following STRS R′′:




Add(0, y) → y
Add(x, 0) → x

Add(S(x), y) → S(Add(x, y))
One(x) → S(0)

Len(Nil) → 0
Len(x :: xs) → S(Len(xs))

Sum(Nil) → 0
Sum(x :: xs) → Add(x, Sum(xs))
Map(f, Nil) → Nil

Map(f, x :: xs) → f(x) :: Map(f, xs)
Sum(Map(One, xs)) → Len(xs)

From Theorem 3.5, R′′ is confluent, hence
GCR(R′′) holds. The properties ∗↔

R∪E
⊆ ∗↔

R′′
in

TB(Σ), GWN(R) and GNF (R) ⊆ GNF (R′′) can
be showed as similar to Example 4.3. Therefore we
have:

R `ind Sum(Map(One, xs)) = Len(xs)

Proposition 4.5 [18] Let R and R′ be STRSs, and
E be a set of equations. Suppose that all of the
following four conditions hold:

(i) →
R

⊆ +→
R′

∧ ∗↔
R∪E

= ∗↔
R′

in TB(Σ)

(ii) GSN(R′)

(iii) GCR(R)

(iv) GNF (R) * GNF (R′)

Then we have R 0pind E. Moreover if all of the
following three conditions additionally hold then we
also have R 0ind E.

(v) SQR(R)

(vi) ord(τ(C)) ≤ 2 for any C ∈ C

(vii) l 6∈ Tτ (C, V ) for any l → r ∈ R

The HKB procedure is also useful for disproving
inductive theorems.

Example 4.6 Consider the following STRS R.




Add(0, y) → y
Add(S(x), y) → S(Add(x, y))

One(0) → 0
One(S(x)) → S(0)
Len(Nil) → 0

Len(x :: xs) → S(Len(xs))
Sum(Nil) → 0

Sum(x :: xs) → Add(x, Sum(xs))
Map(f, Nil) → Nil

Map(f, x :: xs) → f(x) :: Map(f, xs)
Sum(Map(One, xs)) → Len(xs)

This R is obtained by the STRS in Example 4.4:
we change One(0) → S(0) into One(0) → 0.

Based on Proposition 4.5, we prove that

Sum(Map(One, xs)) = Len(xs)

is not an inductive theorem. As similar to Example
4.3, let R′ be the union of R and the above equa-
tion. Unfortunately, GNF (R) ⊆ GNF (R′) holds,
that is, the condition (iv) does not hold. Hence we
transform R′ to a complete STRS as similar to Ex-
ample 4.4. Then the HKB procedure returns the
following STRS R′′:




Add(x, 0) → x
Add(0, y) → y

One(x) → 0
Len(Nil) → 0

Len(x :: xs) → Len(xs)
Sum(Nil) → 0

Sum(x :: xs) → Add(x, Sum(xs))
Map(f, Nil) → Nil

Map(f, x :: xs) → f(x) :: Map(f, xs)
Sum(Map(One, xs)) → Len(xs)

S(y) → y

Since S(0) ∈ GNF (R) and S(0) 6∈ GNF (R′), the
condition (iv) holds. All remaining conditions can
be proved as similar to Example 4.4. Therefore we
have:

R 0ind Sum(Map(One, xs)) = Len(xs)

5 Fusion Transformation

Programming using a functional programming lan-
guage begins with the definition of basic functions
that can then be combined to define more complex
functions. Most basic functions are defined in the
form of a data structure having an inductive struc-
ture such as a list or tree. When combining such
functions, a large amount of intermediate data in-
herent in those data structures can be generated,
and a program that generates such intermediate
data is generally weak in terms of computational ef-
ficiency. It is therefore desirable that a program of
this type be converted to one that does not generate
such intermediate data so that program efficiency
can be improved. This kind of program conversion
is called a fusion transformation [8, 20, 22].

Bellegarde has proposed a fusion transformation
based on the KB procedure [5]. This technique im-
poses the restriction that fused terms must be lin-
ear, and it does not directly use the KB procedure.
Ito, Kusakari and Toyama have shown that fusion
transformation of a TRS can be performed even
with direct use of the KB procedure, and have also
shown by experiment that the linearity restriction
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on fused terms can be removed [11]. These results,
however, pertain to a first-order TRS framework:
they cannot handle higher-order functions. In this
section, we examine by experiment the fusion trans-
formation of higher-order functions using the HKB
procedure.

Consider a function SqSum satisfying the follow-
ing specification:

SqSum [a1, a2, . . . , an] = a1
2 +a2

2 + · · ·+an
2

Let R be the following STRS:

R =





Add(0, y) → y
Add(S(x), y) → S(Add(x, y))

Mul(0, y) → 0
Mul(S(x), y) → Add(Mul(x, y), y)

Sq(x) → Mul(x, x)
Sum(Nil) → 0

Sum(x :: xs) → Add(x, Sum(xs))
Map(f, Nil) → Nil

Map(f, x :: xs) → f(x) :: Map(f, xs)

By using this STRS, we also give the specification
for SqSum as follows:

SqSum(xs) = Sum(Map(Sq, xs))

Here we use the HKB procedure. Its inputs are R∪
{SqSum(xs) = Sum(Map(Sq, xs))} and the lexi-
cographic path order (Definition 2.2) with Map B
SqSumBSumBSq BMulBAddB :: BNilBS B0.
Then the HKB procedure returns the union of R
and the following three rules:

Sum(Map(Sq, xs)) → SqSum(xs)
SqSum(Nil) → 0

SqSum(x :: xs) → Add(Mul(x, x), SqSum(xs))

Then two back rules give the definition of SqSum:
{

SqSum(Nil) → 0
SqSum(x, xs) → Add(Mul(x, x), SqSum(xs))

This definition is more efficient than the input
SqSum(xs) = Sum(Map(Sq, xs)). Actually, this
definition can be obtained only by carrying out scan
once, although scan of list xs is carried out twice in
the definition at the time of an input. Thus, fusion
transformation can be performed using the HKB
procedure.

6 Concluding Remarks

The higher-order KB procedure proposed in this
study has already been implemented and subjected
to various experiments. Since the achievement of a
higher-order KB procedure is presently not known,

we feel that this study will make a significant con-
tribution to the field. This higher-order KB pro-
cedure is currently being applied directly to induc-
tionless induction. When applying the KB proce-
dure to inductionless induction, obtaining complete
output for only ground terms is sufficient, and as a
result, various improvements are being made in ad-
vanced research within the first-order TRS frame-
work. In particular, the technique called linear
strategy proposed by Fribourg is especially effec-
tive in suppressing the generation of critical pairs
[9]. The introduction of results such as these will
be taken up as a future research theme. The ap-
plication of our higher-order KB procedure to fu-
sion transformation is currently being performed
by experiment only, but good results are being
achieved. Its theoretical analysis must also be pur-
sued as a future research theme. Of considerable
interest here is Example 4.4, which presents an ap-
plication of this higher-order KB procedure to in-
ductionless induction. In this example, the rule
{One(0) → S(0), One(S(x)) → S(0)} is optimized
as {One(x) → S(0)} by the higher-order KB proce-
dure. The use of the procedure should be analyzed
within a much larger framework than simply fusion
transformation.

A higher-order KB procedure and its applica-
tion to inductionless induction were implemented
by the first author Kusakari, as a post-doctorate
sub-theme at the Japan Advanced Institute of Sci-
ence and Technology (JAIST) in 1999. Example
4.3, which presents an application to inductionless
induction (Proposition 4.2), was first presented at
that time. Results similar to these with respect
to inductionless induction were also presented in
2003 by Aoto, Yamada, and Toyama [1]. Unfor-
tunately, all of the above results confused the dif-
ference between inductive theorems and primitive
inductive theorems, and erroneously used the term
“inductive theorems”. In [18], Kusakari, Sakai, and
Sakabe made a clear distinction between the con-
cepts of inductive theorems and primitive inductive
ones. They showed that inductive theorems corre-
spond to initial extensional algebra semantics and
presented a sufficient condition for inductive theo-
rems to agree with primitive inductive theory. At
the request of Toyama, Kusakari presented a lecture
on the results in [18] to Aoto and Yamada in Au-
gust 2003. In the following year, Aoto, Yamada,
and Toyama presented results on the automated
proving of inductive theorems [2] using a formal-
ization different from that of [18]. Furthermore, in
2002, the second author Chiba re-implemented the
higher-order KB procedure in graduate work ap-
plying it to the glass-replacement puzzle and fusion
transformation.
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