
Static Dependency Pair Method

for Simply-Typed Term Rewriting

and Related Techniques

KUSAKARI Keiichirou, SAKAI Masahiko

Graduate School of Information Science, Nagoya University
{kusakari,sakai}@is.nagoya-u.ac.jp

Abstract. A static dependency pair method, proposed by us, can effectively prove termination
of simply-typed term rewriting systems (STRSs). The theoretical basis is given by the notion
of strong computability. This method analyzes a static recursive structure based on definition
dependency. By solving suitable constraints generated by the analysis result, we can prove the
termination. Since this method is not applicable to every system, we proposed a class, namely,
plain function-passing, as a restriction. In this paper, we first propose the class of safe function-
passing, which relaxes the restriction by plain function-passing. To solve constraints, we often
use the notion of reduction pairs, which is designed from a reduction order by the argument
filtering method. Next, we improve the argument filtering method for STRSs. Our argument
filtering method does not destroy type structure unlike the existing method for STRSs. Hence,
our method can effectively apply reduction orders which make use of type information. To
reduce constraints, the notion of usable rules is proposed. Finally, we enhance the effectiveness
of reducing constraints by incorporating argument filtering into usable rules for STRSs.

Keyword. Simply-Typed Term Rewriting, Termination, Static Dependency Pair Method, Ar-
gument Filtering, Usable Rule.

1 Introduction

A simply-typed term-rewriting system (STRS),
proposed by Kusakari, is a computational model
that provides operational semantics for functional
programs and directly handles higher-order func-
tions [18]. For example, the left-folding function
foldl, a typical higher-order function, is repre-
sented as the following STRS Rfoldl:{

foldl[f, y, nil] → y
foldl[f, y, cons[x, xs]] → foldl[f, f [y, x], xs]

Using the function foldl, the sum function, which
calculates the total sum for an input list, can be
represented as STRS Rsum, which is the union of
Rfoldl and the following rules: add[0, y] → y

add[s[x], y] → s[add[x, y]]
sum → foldl[add, 0]

A dependency pair method, proposed by Arts
and Giesl, is a method for proving termination of
first-order term rewriting systems (TRSs) based on
recursive structure analysis [1]. In higher-order set-
tings, there are two kinds of analysis for recur-
sive structures. One is a dynamic analysis based

on function-call dependency, and the other is a
static analysis based on definition dependency. In
other words, a dynamic dependency pair method
considers a dependency through higher-order vari-
ables, but a static dependency pair method need
not consider such a dependency. Hence, a static
dependency pair method has more practical advan-
tage than a dynamic method. Dynamic dependency
pair methods were introduced in STRSs [18] and
in HRSs [24], which are natural extensions of the
dependency pair method in TRSs [1]. We also pro-
posed a static dependency pair method in [22]. The
key idea of the static dependency pair method is
to analyze a recursive structure from the viewpoint
of strong computability, which was introduced for
proving termination in typed λ-calculus [12, 27].
For the STRS Rsum, the static dependency pair
method returns the following two static recursion
components:

{foldl][f, y, cons[x, xs]] → foldl][f, f [y, x], xs]}
{add][s[x], y] → add][x, y]}

We can effectively and efficiently prove the termi-
nation of STRSs by showing the non-loopingness of
these components as will hereinafter be described
in detail.

Unfortunately static dependency pair methods

1

are not applicable to every STRSs, that is, there
exists a non-terminating STRS that has no static
recursive structure. The STRS {foo[bar[f]] →
f [bar[f]]} is a such example. Hence, we need a
suitable restriction under which static dependency
pair methods work well. As such a restriction, we
proposed the notion of plain function-passing [22].
Roughly speaking, plain function-passing means
that every higher-order variable occurs in an argu-
ment position on the left-hand side. For example,
the STRS Rapp0{

app0[nilF] → nil
app0[consF[f, fs]] → cons[f [0], app0[fs]]

is not plain function-passing because the underlined
occurrence of the higher-order variable f is not an
argument position. Hence, the static dependency
pair method in [22] was not applicable to Rapp0 .
In this paper, we introduce the notion of a peel-
ing order, and by using this notion we introduce
the notion of safe function-passing, which expands
the application range of the static dependency pair
method. Thus, we can apply the static dependency
pair method to Rapp0 .

To show the non-loopingness of each static recur-
sion component, we often use reduction pairs or the
subterm criterion. The argument filtering method
generates a reduction pair from a given reduction
order. This method was introduced in TRSs [1], and
extended to STRSs [18]. However the method does
not work well in general STRSs and may destroy
the well-typedness of terms. In [18], we showed
that the method works well in left-firmness STRSs,
that is, any variable of the left-hand sides occurs
at a leaf position. On the other hand, destroying
the well-typedness remarkably complicates the ap-
plication of the argument filtering method to re-
duction orders which make use of type information
[19]. In this paper, we improve the argument fil-
tering method. Although the improved method re-
quires that target STRSs is left-firmness, this never
destroys the well-typedness. In spite of the fact
that the idea is simple, our improvement yields very
substantial benefits when combined with reduction
orders that make use of type information. In con-
trast to the discussion about the applications of the
argument filtering method in [19], we need not indi-
vidually discuss application to each reduction order,
and we can comb out some applied conditions.

To reduce the number of constraints when prov-
ing the non-loopingness by reduction pairs, the
notion of usable rules was introduced in TRSs
[15, 29, 11]. We extended the notion onto STRSs
[26]. In first-order TRSs, we know that usable rules
can be strengthened by incorporating argument fil-
tering into usable rules [29, 11]. In this paper, we

also strengthen usable rules by incorporating argu-
ment filtering into usable rules for STRSs.

The remainder of this paper is organized as fol-
lows. The next section provides preliminaries re-
quired later in the paper. In Section 3, we in-
troduce the notion of safe function-passing, and
show that the static dependency pair method works
well in safe function-passing STRSs. In Section 4,
we introduce the argument filtering method which
never destroys the well-typedness, unlike in existing
method. In Section 5, we strengthen usable rules by
incorporating argument filtering into usable rules
for STRSs. Concluding remarks are presented in
Section 6.

2 Preliminaries

Untyped term rewriting systems (UTRSs) were in-
troduced by removing arity constraints from first-
order term rewriting systems (TRSs), and simply-
typed term rewriting systems (STRSs) were intro-
duced as UTRSs with simple-type constraints [18].

In this section, we introduce the basic notations
for simply-typed term rewriting systems, according
to the literature [22]. We assume that the reader
is familiar with notions of term rewriting systems
[28].

2.1 Abstract Reduction System

An abstract reduction system (ARS) is a pair 〈A,→〉
where A is a set and → is a binary relation on A.
The transitive-reflexive closure and the transitive
closure of a binary relation → are denoted by ∗−→
and +−→, respectively. An element a ∈ A is said to
be terminating or strongly normalizing in an ARS
R = 〈A,→〉, denoted by SN(R, a), if every reduc-
tion sequence staring from a is finite. An ARS
R = 〈A,→〉 is said to be terminating or strongly
normalizing, denoted by SN(R), if SN(R, a) holds
for any a ∈ A.

2.2 Untyped Term Rewriting Sys-
tem

The set T (Σ,V) of (untyped) terms generated from
a set Σ of function symbols and a set V of vari-
ables with Σ ∩ V = ∅ is the smallest set such that
a[t1, . . . , tn] ∈ T (Σ,V) whenever a ∈ Σ ∪ V and
t1, . . . , tn ∈ T (Σ,V). If n = 0, we write a for
a[]. The identity of terms is denoted by ≡. We of-
ten write s0[s1, . . . , sn] for a[u1, . . . , uk, s1, . . . , sn],
where s0 ≡ a[u1, . . . , uk]. V ar(t) is the set of vari-
ables in t, and args(t) is the set of arguments in t,
defined as args(a[t1, . . . , tn]) = {t1, . . . , tn}.

The set of positions of a term t is the set Pos(t)
of strings over positive integers, which is inductively

2

defined as Pos(a[t1, . . . , tn]) = {ε} ∪
∪n

i=1{ip | p ∈
Pos(ti)}. The prefix order ≺ on positions is defined
by p ≺ q iff pw = q for some w (6= ε). The position ε
is said to be the root, and a position p such that p ∈
Pos(t)∧p1 /∈ Pos(t) is said to be a leaf. The symbol
at position p in t is denoted by (t)p. Sometimes the
root symbol (t)ε in a term t is denoted by root(t).

A substitution θ is a mapping from variables
to terms. A substitution θ is extended to a
mapping from terms to terms, denoted by θ̂, as
θ̂(f [t1, . . . , tn]) = f [θ̂(t1), . . . , θ̂(tn)] if f ∈ Σ;
θ̂(z[t1, . . . , tn]) = a[u1, . . . , uk, θ̂(t1), . . . , θ̂(tn)] if
z ∈ V with θ(z) = a[u1, . . . , uk]. For simplicity,
we identify θ and θ̂, and write tθ instead of θ(t).

A context is a term with one occurrence of the
special symbol ¤, called a hole. The notation C[t]
denotes the term obtained by substituting t into the
hole of C[], that is, C[t] ≡ a[t1, . . . , tn, u1, . . . , uk]
if C[] ≡ ¤[u1, . . . , uk] and t ≡ a[t1, . . . , tn], and
C[t] ≡ a[. . . , C ′[t], . . .] if C[] ≡ a[. . . , C ′[], . . .]. A
context is said to be a leaf-context if the hole occurs
at a leaf position, and to be a root-context if the hole
occurs at the root position. For example, s[¤] and
foldl[f,¤] are leaf-contexts, ¤[0] and ¤[f, nil] are
root-contexts, and ¤ is a leaf-context and a root-
context.

A term u is said to be a subterm (resp. an ex-
tended subterm) of t, denoted by t ≥sub u (resp.
t ≥esub u), if there exists a leaf-context (resp. con-
text) C[] such that t ≡ C[u]. We also define >sub =
≥sub \ ≡ and >esub = ≥esub \ ≡. We denote all
subterms (resp. extended subterms) of t by Sub(t)
(resp. ESub(t)). The subterm of t at position p
is denoted by t|p. For example, Sub(a′[a[x, y]]) =
{a′[a[x, y]], a[x, y], x, y} and ESub(a′[a[x, y]]) =
{a′[], a[], a[x]} ∪Sub(a′[a[x, y]]). A term u is said
to be a prefix of a term t, denoted by u v t, if t has
the form u[u1, . . . , un].

A rule is a pair (l, r) of terms, denoted by l → r,
such that root(l) ∈ Σ and V ar(l) ⊇ V ar(r). The
reduction relation −→

R
of a set R of rules is defined

by s −→
R

t iff s ≡ C[lθ] and t ≡ C[rθ] for some rule
l → r ∈ R, context C[] and substitution θ. We
often omit the subscript R whenever no confusion
arises. An untyped term rewriting system (UTRS)
is an abstract reduction system 〈T (Σ,V), −→

R
〉. We

often denote an UTRS 〈T (Σ,V), −→
R
〉 by R.

2.3 Simply-Typed Term Rewriting
System

A set of basic types is denoted by B. The set S of
simple types (with product types) is generated from
B by type constructors → and ×, that is, S ::=
B | (S1 → S2) | (S1 × · · · × Sn). To minimize the
number of parentheses, we assume that → is right-
associative and → has lower precedence than ×. A

product type is a simple type of the form α1 × · · · ×
αn. A functional type or a higher-order type is a
simple type of the form α → β. We denote the
set of functional types by Sfun , and the set of non-
functional types by Snfun . A simple type α is said
to be a suffix of a simple type β, denoted by β wS α,
if β has the form α1 → · · · → αn → α.

A typing function τ is a function from V ∪ (Σ \
{tp}) to S. We assume that for any α ∈ S there
exists a variable x ∈ V such that τ(x) = α. We
also assume that Σ contains a special construc-
tor tp, called a tuple. We write (t1, . . . , tn) in-
stead of tp[t1, . . . , tn]. Each typing function τ is
naturally extended to terms as follows: for any
t ≡ a[t1, . . . , tn] ∈ T (Σ,V), if τ(ti) = αi (i =
1, . . . , n) and either τ(a) = α1 → · · · → αn → α
or a = tp ∧ α = α1 × · · · × αn, then τ(t) = α.
A term t ∈ T (Σ,V) is said to be simply-typed if t
has a simple type, that is, τ(t) is defined. A term
t, which has a simple type α, is often denoted by
tα. We denote the set of all simply-typed terms
by Tτ (Σ,V). We also denote the set of functional
(resp. non-functional) typed terms by Tfun(Σ,V)
(resp. Tnfun(Σ,V)). We use Vfun to stand for the set
of functionally typed variables (higher-order vari-
ables), and Vnfun to stand for the set V \Vfun . Now
we restrict substitutions to type preserving substi-
tutions. We also index the hole ¤α with every sim-
ple type α, and assume that τ(t) = α whenever we
denote C[t] for each context C[] with a hole ¤α. In
the following, a simply-typed term is often shortly
denoted by a term.

A simply-typed rule is a pair (l, r) of simply-
typed terms, denoted by l → r, such that root(l) ∈
Σ \ {tp}, V ar(l) ⊇ V ar(r) and τ(l) = τ(r). A
simply-typed term rewriting system (STRS) is an
abstract reduction system 〈Tτ (Σ,V), −→

R
〉. We of-

ten denote an STRS 〈Tτ (Σ,V), −→
R
〉 by R. For

each STRS R, we define TSN(R) = {t | SN(R, t)},
T¬SN(R) = Tτ (Σ,V) \ TSN(R), and T args

SN (R) = {t |
∀u ∈ args(t).SN(R, u)}.

Let R be an STRS and l → r ∈ R such that
τ(l) = α1 → · · · → αn → α and α ∈ Snfun . The set
(l → r)ex of the expansion forms of a rule l → r is
defined as {l → r, l[z1] → r[z1], . . . , l[z1, . . . , zn] →
r[z1, . . . , zn]}, where zα1

1 , . . . , zαn
n are fresh vari-

ables. We also define Rex =
∪

l→r∈R(l → r)ex.
The rule (l → r)ex↑ of the full expansion form of
l → r is defined as l[z1, . . . , zn] → r[z1, . . . , zn],
where zα1

1 , . . . , zαn
n are fresh variables. We also de-

fine Rex↑ = {(l → r)ex↑ | l → r ∈ R}.

Proposition 2.1 Let R be an STRS. If s −→
R

t then
there exist a rule l → r ∈ Rex, a leaf-context C[],
and a substitution θ such that s ≡ C[lθ] and t ≡
C[rθ].

3

A term t is said to be finite branching in an STRS
R if {t′ | t −→

R
t′} is finite. An STRS R is said to be

finite branching if any term is finite branching in R.
A well-founded strict order > on terms is said to

be a reduction order (resp. semi-reduction order) if
> is closed under substitutions and contexts (resp.
leaf-contexts). We note that STRS R is terminating
iff R ⊆ > for some reduction order >, and iff Rex ⊆
> for some semi-reduction order >.

All root symbols of the left-hand sides of rules
in an STRS R, denoted by DR, are called defined,
whereas all other function symbols, denoted by CR,
are called constructors.

3 Static Dependency Pair
Method

We proposed the static dependency pair method,
which can effectively prove termination of STRSs
[22]. This method analyzes a static recursive struc-
ture based on definition dependency, in contrast to
dynamic dependency pair methods that analyze a
dynamic recursive structure based on function-call
dependency through higher-order variables [18, 24].
Hence, static dependency pair methods have a more
practical advantage than dynamic ones. The key
idea of the static dependency pair method is that a
static recursive structure can be formulated as a re-
cursive structure from the viewpoint of strong com-
putability, which was introduced for proving termi-
nation in typed λ-calculus [12, 27]. As described
in the Introduction, static dependency pair meth-
ods are not applicable to every STRS. Hence, we
proposed the notion of plain function-passing [22].
Roughly speaking, plain function-passing means
that every higher-order variable occurs in an argu-
ment position on the left-hand side.

From a technical viewpoint, we have noticed that
the unclosedness of strong computability with re-
spect to the subterm relation is the reason why the
static dependency pair method is not applicable to
every STRS. Accordingly, we introduce the notion
of a peeling order and reconstruct the strong com-
putability by using this peeling order. Then we can
peel a strongly computable term such that peeled
subterms are strongly computable. As a result, we
introduce the notion of safe function-passing which
expands the application range of the static depen-
dency pair method. Thus, we can apply the static
dependency pair method to Rapp0 displayed in the
Introduction. Since we change the definition of
strong computability, which gives a theoretical ba-
sis for the static dependency pair method, we prove
the soundness of the static dependency pair method
under this new framework.

3.1 Safe Function-Passing

We introduce the notion of a peeling order, and
by using this notion we introduce the notion of safe
function-passing under which the static dependency
pair method works well.

Definition 3.1 (Peeling Order) A well-founded
quasi order &S on types is said to be a peeling order
if α → β �S α and α → β �S β hold.

For any peeling order &S , term t and set A of
types, we define Sub

&S
A (t) as the smallest set satis-

fying the following properties:

• args(t) ⊆ Sub
&S
A (t)

• if u ≡ a[u1, . . . , un] ∈ Sub
&S
A (t), a ∈ CR, τ(u) ∈

A and u &S ui then ui ∈ Sub
&S
A (t)

Example 3.2 Let Rapp0 be the STRS defined as
follows:{

app0[nilF] → nil
app0[consF[f, fs]] → cons[f [0], app0[fs]]

where τ(app0) = LN→N → LN , τ(nil) = LN ,
τ(nilF) = LN→N , τ(cons) = N → LN → LN ,
τ(consF) = (N → N) → LN→N → LN→N , and
so on. Since simple types can be interpreted as
first-order terms, we present an order &S on simple-
types by the recursive path order with the prece-
dence LN→N B → and LN→N B N [5]. Then &S
is a peeling order. For A = {LN→N}, we have
Sub

&S
A (app0[consF[f, fs]]) = {consF[f, fs], f, fs}.

Definition 3.3 (Safe Function-Passing) An
STRS R is said to be safe function-passing with
respect to a peeling order &S if there exists a
set PT of non-functional types such that for any
l → r ∈ R and v ∈ Sub(r), the following properties
hold:

• if root(v) ∈ Vfun then there exists u ∈
Sub

&S
P T (l) such that u v v, and

• if v ∈ Vnfun and τ(v) ∈ PT then v ∈ Sub
&S
P T (l).

The set PT is said to be peeling types, and a safe
function-passing STRS is often shortly denoted by
SFP-STRS.

Example 3.4 Consider the STRS Rapp0 given in
Example 3.2. Take PT as the set A in Ex-
ample 3.2. Then Rapp0 is safe function-passing
because we have f, fs ∈ {consF[f, fs], f, fs} =
Sub

&S
PT (app0[consF[f, fs]]).

4

We note that plain function-passing [22] corre-
sponds to safe function-passing if PT = {α | α is
a product type, α 6= τ(z) for all l → r ∈ R and
z ∈ V ar(r)} and &S is defined as the subtype rela-
tion.

3.2 Strong Computability

In this subsection, we build peeling order/types into
the strong computability, which gives a theoretical
basis for the static dependency pair method.

Definition 3.5 (Strong Computability) Let R
be an SFP-STRS with a peeling order &S and peel-
ing types PT . A term t is said to be strongly com-
putable in R, if SC(R, t) holds, which is defined as
follows:

• in case of τ(t) ∈ Snfun \PT , SC(R, t) is defined
as SN(R, t),

• in case of τ(t) ∈ PT , SC(R, t) is de-
fined as SN(R, t) and SC(R, u) for any u ∈∪
{args(t′) | t ∗−→

R
t′, root(t′) ∈ CR} such that

τ(t) &S τ(u).

• in case of τ(t) = α → β, SC(R, t) is defined as
SC(R, u) ⇒ SC(R, t[u]) for any uα.

For each SFP-STRS R, we define TSC(R) = {t |
SC(R, t)}, T¬SC(R) = Tτ (Σ,V) \ TSC(R), and
T args

SC (R) = {t | ∀u ∈ args(t).SC(R, u)}.

Theorem 3.6 The predicate SC is well-defined for
SFP-STRSs.

Proof. Let R be an SFP-STRS with &S and PT .
Assume that SC is not well-defined.

Let t0 be a minimal term with respect to &S such
that SC(R, t0) is not well-defined, that is, SC(R, t)
is well-defined for any t with τ(t0) �S τ(t). From
the minimality of t0, τ(t0) ∈ PT , SN(R, t0), and
there exist t′0 and t1 such that t0

∗−→
R

t′0, t1 ∈
args(t′0), τ(t0) ∼S τ(t1), and SC(R, t1) is not well-
defined, where ∼S is the equivalence part of &S .

Since τ(t0) ∼S τ(t1), t1 is also a minimal term
with respect to &S such that SC(R, t1) is not well-
defined. By applying the procedure above, we ob-
tain t′1 and t2 such that t1

∗−→
R

t′1, t2 ∈ args(t′1),
τ(t1) ∼S τ(t2), and SC(R, t2) is not well-defined.

By applying this procedure repeatedly, we obtain
t′2, t

′
3, . . . and t3, t4, . . . such that ti

∗−→
R

t′i and ti+1 ∈
args(t′i) for i = 2, 3, Since >sub ∪ −→

R
is well-

founded on terminating terms, this contradicts with
SN(R, t0). ¤

We now present the basic properties of strong
computability.

Lemma 3.7 For any SFP-STRS R, the following
properties hold:

(1) For any strongly computable terms
tα1→···→αn→α and uαi

i (i = 1, . . . , n), we
have SC(R, t[u1, . . . , un]).

(2) For any non-strongly computable term
tα1→···→αn→α, there exist strongly com-
putable terms uαi

i (i = 1, . . . , n) such that
¬SC(R, t[u1, . . . , un]).

(3) SC(R, t) ∧ t ∗−→
R

t′ ⇒ SC(R, t′) for all t and t′.

(4) Any variable zα is strongly computable, for all
α ∈ S.

(5) SC(R, tα) ⇒ SN(R, tα), for all α ∈ S.

Proof. The properties (1) and (2) are easily shown
by induction on n.

(3) We prove the claim by induction on τ(t). The
case τ(t) ∈ Snfun is trivial. Suppose that
τ(t) = τ(t′) = α → β. Let uα be an arbitrary
strongly computable term. Then SC(R, t[u])
follows from SC(R, t). Since t[u] ∗−→

R
t′[u] and

τ(t[u]) = β, SC(R, t′[u]) follows from the in-
duction hypothesis. Hence, SC(R, t′) holds.

(4,5) We prove claims by simultaneous induction
on α. The case α ∈ Snfun is trivial. Suppose
that α = α1 → · · · → αn → β and β ∈ Snfun .

(4): Assume that z is not strongly computable
for some z ∈ Vα. From (2), there exist
strongly computable terms uα1

1 , . . . , uαn
n such

that z[u1, . . . , un] is not strongly computable.
From the induction hypothesis (5), each ui is
terminating, hence so is z[u1, . . . , un]. Since
z[u1, . . . , un] is not strongly computable and
β ∈ Snfun , we have β ∈ PT and there exist
terms u′ and u such that z[u1, . . . , un] ∗−→

R
u′,

u ∈ args(u′), and u is not strongly computable.
Since root(l) /∈ V for all l → r ∈ R, there ex-
ists i such that ui

∗−→
R

u. From (3), ui is not
strongly computable. This is a contradiction.

(5): From the induction hypothesis (4), an
arbitrary variable zα1

1 is strongly computable.
Thus, t[z1] is strongly computable. From the
induction hypothesis (5), t[z1] is terminating,
hence so is t. ¤

We previously mentioned that we can peel a
strongly computable term such that peeled sub-
terms are strongly computable. In the proof of the
soundness of the static dependency pair method,
this mention is formulated as the following lemma.

5

Lemma 3.8 Let R be an SFP-STRS, l → r ∈ R,
and θ be a substitution such that lθ ∈ T args

SC (R).
Then SC(R, uθ) holds for any u ∈ Sub

&S
P T (l).

Proof. Since u ∈ Sub
&S
P T (l), we have either u ∈

args(l) or there exists u′ ≡ a[. . . , u, . . .] ∈ Sub
&S
PT (l)

such that a ∈ CR, τ(u′) ∈ PT and τ(u′) &S τ(u). In
the former case, we have SC(R, uθ) because of lθ ∈
T args

SC (R). In the latter case, it suffices to show that
SC(R, uθ) whenever SC(R, u′θ), which is directly
deduced from the definition of strong computability.

¤

3.3 Static Dependency Pair Method

We present a static dependency pair method for
SFP-STRSs. Since we modified the definition of
strong computability, which gives a theoretical basis
for the static dependency pair method, we prove
the soundness of the static dependency pair method
under this new framework.

Definition 3.9 For each f ∈ DR, we provide a new
function symbol f], called the marked-symbol of f .
For each t ≡ a[t1, . . . , tn], we define the marked term
t] by a][t1, . . . , tn] if a ∈ DR; otherwise t] ≡ t.

Let R be an SFP-STRS. For each l → r ∈ Rex↑

and a[r1, . . . , rm] ∈ Sub(r) such that

• a ∈ DR,

• there exists no u ∈ Sub
&S
PT (l) such that u v

a[r1, . . . , rm], and

• there exists no u ∈ Sub(l) \ {l} such that u ≡
a[r1, . . . , rm] and τ(u) ∈ Snfun \ PT ,

we define a static dependency pair of R as a pair
〈l], a][r1, . . . , rm, z1, . . . , zn]〉, denoted by

l] → a][r1, . . . , rm, z1, . . . , zn],

where τ(a][r1, . . . , rm, z1, . . . , zn]) ∈ Snfun and
z1, . . . , zn are fresh variables. We denote by
SDP (R) the set of all static dependency pairs of
R.

Example 3.10 Let RsumF be the following STRS:

RsumF = Rsum ∪ Rapp0 ∪ {sumF[fs] → sum[app0[fs]]}

where Rsum and Rapp0 are displayed in the Intro-
duction. Since Rsum ∪ Rapp0 is safe function-passing
(cf. Example 3.4) and fs ∈ args(sumF[fs]), then
STRS RsumF is safe function-passing. Thus, the set

SDP (RsumF) consists of the following seven static
dependency pairs:

foldl][f, y, cons[x, xs]] → foldl][f, f [y, x], xs]
add][s[x], y] → add][x, y]

sum][z] → foldl][add, 0, z]
sum][z] → add][z′]

app0][consF[f, fs]] → app0][fs]
sumF][fs] → sum][app0[fs]]
sumF][fs] → app0][fs]

Definition 3.11 Let R be an SFP-STRS. A (pos-
sibly infinite) sequence u]

1 → v]
1, . . . , u

]
n → v]

n of
static dependency pairs of R is said to be a static
dependency chain of R if there exist θ1, . . . , θn such
that u]

iθi, v
]
iθi ∈ T args

SC (R) and v]
iθi

∗−→
R

u]
i+1θi+1

for any i. A static dependency graph of R is a
directed graph, in which nodes are SDP (R) and
there exists an arc from u] → v] to u′] → v′] if
u] → v], u′] → v′] is a static dependency chain.

Definition 3.12 A (maximal) static recursion
component of R is a set of nodes in a (maximal)
strongly connected subgraph of a static dependency
graph. We denote by SRC(R) the set of all static
recursion components of R.

A static recursion component C ∈ SRC(R) is
said to be non-looping if there exists no infinite
static dependency chain u]

0 → v]
0, u

]
1 → v]

1, · · · such
that u]

i → v]
i ∈ C for all i and every u] → v] ∈ C

occurs infinitely many times.

Example 3.13 Referencing to Example 3.10. The
set SRC(RsumF) consists of the following three static
recursion components:

{foldl][f, y, cons[x, xs]] → foldl][f, f [y, x], xs]}
{add][s[x], y] → add][x, y]}
{app0][consF[f, fs]] → app0][fs]}

In the remainder of this subsection, we show the
soundness of the static dependency pair method
on SFP-STRSs. That is, we show that if any
static recursion component of SFP-STRS R are
non-looping, then R is terminating. We need pre-
pare two key lemmas.

Lemma 3.14 If an SFP-STRS R is not terminat-
ing then Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args

SC (R) 6= ∅.

Proof. Since R is not terminating, T¬SC(R) 6= ∅
follows from Lemma 3.7(5).

Let s be a minimal term in T¬SC(R) with respect
to term size. Then s ∈ T args

SC (R) holds because the
strong computability of each s′ ∈ args(s) follows
from the minimality of s. Hence, we have T¬SC(R)∩
T args

SC (R) 6= ∅.

6

Let t be a minimal term in T¬SC(R) ∩ T args
SC (R)

with respect to type size. It suffices to show that
t ∈ Tnfun(Σ,V). Assume that t /∈ Tnfun(Σ,V). Let
τ(t) = α → β and uα be an arbitrary strongly com-
putable term. Since t ∈ T args

SC (R) and u ∈ TSC(R),
we have t[u] ∈ T args

SC (R). From τ(t[u]) = β and
the minimality of τ(t) = α → β, we have t[u] /∈
T¬SC(R) ∩ T args

SC (R). Hence, t[u] ∈ TSC(R). Then
we have t ∈ TSC(R), which is a contradiction. ¤

Lemma 3.15 Let R be an SFP-STRS. For any t ∈
Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args

SC (R), there exist l] →
v] ∈ SDP (R) and θ such that t] ∗−→

R
l]θ and lθ, vθ ∈

Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args
SC (R).

Proof. Let t ∈ Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args
SC (R).

Then t ∈ T args
SN (R) follows from t ∈ T args

SC (R) and
Lemma 3.7(5).

• Consider the case that t /∈ TSN(R). Since
t ∈ T args

SN (R) ∩ Tnfun(R), there exist l → r ∈
Rex↑ and θ′ such that t] ∗−→ l]θ′, ¬SN(R, lθ′)
and ¬SN(R, rθ′). Hence, ¬SC(R, lθ′) and
¬SC(R, rθ′) follow from Lemma 3.7(5).

• Consider the case that t ∈ TSN(R). Since
t ∈ T¬SC(R)∩Tnfun(R), we have τ(t) ∈ PT and
there exist terms t′ and t′′ ∈ args(t′) such that
t ∗−→ t′, root(t′) ∈ CR, τ(t) &S τ(t′′), and t′′ ∈
T¬SC(R). Assume that root(t) ∈ CR. Then
SC(R, t) follows from t ∈ TSN(R) ∩ T args

SC (R),
root(t) ∈ CR, and Lemma 3.7(3). This is a con-
tradiction. Hence, root(t) /∈ CR. Thus, there
exist l → r ∈ Rex↑ and θ′ such that t] ∗−→ l]θ′

and lθ′ −→ rθ′ ∗−→ t′. Since t′′ is not strongly
computable, so is t′. From Lemma 3.7(3), we
have ¬SC(R, lθ′) and ¬SC(R, rθ′).

In both cases above, we have {v′ ∈ Sub(r) |
¬SC(R, v′θ′)} 6= ∅ because r ∈ Sub(r) and
¬SC(R, rθ′). Let v′ ≡ a[r1, . . . , rm] be a minimal
size term in this set. Then SC(R, riθ

′) holds for ev-
ery i. From Lemma 3.7(2), there exist v1, . . . , vk ∈
TSC(R) such that τ(v′θ′[v1, . . . , vk]) ∈ Snfun and
¬SC(v′θ′[v1, . . . , vk]). Here v′θ′[v1, . . . , vk] ∈
T args

SC (R).
Now take v by a[r1, . . . , rm, z1, . . . , zk] where

z1, . . . , zk are fresh variables, and θ(x) is defined
by vi if x = zi (i = 1, . . . , k); otherwise by θ′(x).
Then we have lθ = lθ′ and vθ = v′θ′[v1, . . . , vk].
Since lθ ∈ T args

SC (R) follows from t ∈ T args
SC (R)

and Lemma 3.7(3), we have lθ ∈ Tnfun(Σ,V) ∩
T¬SC(R) ∩ T args

SC (R). Because vθ ∈ Tnfun(Σ,V) ∩
T¬SC(R) ∩ T args

SC (R) also holds, it suffices to show
that l] → v] ∈ SDP (R). We prove this by con-
tradiction. Assume that l] → v] /∈ SDP (R). Let
l ≡ l′[z′1, . . . , z

′
p] and r ≡ r′[z′1, . . . , z

′
p] such that

l′ → r′ ∈ R and z′1, . . . , z
′
p are fresh variables.

• Assume that a ∈ Vnfun and τ(v) /∈ PT .
Since vθ ≡ aθ ∈ Sub(lθ) and lθ ∈ T args

SN (R),
SN(R, vθ) holds, and hence SC(R, vθ) also
holds. This is a contradiction.

• Assume that either a ∈ Vfun or a ∈ Vnfun

and τ(v) ∈ PT . Since R is safe function-
passing, SC(R, vθ) follows from Lemma 3.8,
vθ ∈ T args

SC (R), and Lemma 3.7 (1). This is
a contradiction.

• Assume that a ∈ CR. Since vθ ∈ T args
SN (R) from

Lemma 3.7(5), vθ is terminating. Since vθ ∈
Tnfun(Σ,V) ∩ T¬SC(R), we have τ(vθ) ∈ PT
and there exist terms u′ and u′′ ∈ args(u′) such
that vθ ∗−→ u′, root(u′) ∈ CR, τ(vθ) &S τ(u′′)
and u′′ ∈ T¬SC(R). Since root(vθ) = a ∈ CR

and vθ ∈ T args
SC (R), u′ ∈ T args

SC (R) follows from
Lemma 3.7(3). This is a contradiction.

• Assume that a ∈ DR and there exists
u ∈ Sub

&S
PT (l) such that u v a[r1, . . . , rm].

From Lemma 3.8, we have SC(R, uθ). From
vθ ∈ T args

SC (R) and Lemma 3.7(1), we have
SC(R, vθ). This is a contradiction.

• Assume that a ∈ DR and there exists u ∈
Sub(l) \ {l} such that u ≡ a[r1, . . . , rm] and
τ(u) ∈ Snfun \ PT . Then u ≡ v follows
from τ(u) ∈ Snfun . Since lθ ∈ T args

SC (R),
lθ ∈ T args

SN (R) follows from Lemma 3.7(5),
and hence vθ is terminating. Since τ(vθ) ∈
Snfun \ PT , vθ is strongly computable. This is
a contradiction. ¤

We obtain the fundamental theorem of the static
dependency pair method.

Theorem 3.16 Let R be an SFP-STRS. If there
exists no infinite static dependency chain then R is
terminating.

Proof. Assume that ¬SN(R). From Lemma 3.14,
there exists t ∈ Tnfun ∩T¬SC(R) ∩T args

SC (R). By ap-
plying Lemma 3.15 repeatedly, we have an infinite
static dependency chain, which leads to a contra-
diction. ¤

Note that the inverse of the theorem does not
hold. For example, let Rfix be the SFP-STRS
{fix[f, x] → f [fix[f], x]}. Although Rfix is termi-
nating, the infinite sequence composed of the static
dependency pair fix][f, x] → fix][f, z] is an infinite
static dependency chain. Hence, the static depen-
dency pair method has a theoretical limitation for
the completeness.

7

Corollary 3.17 Let R be an SFP-STRS such that
there exists no infinite path1 in the static de-
pendency graph. If all recursion components in
SRC(R) are non-looping then R is terminating.

3.4 Non-loopingness of Recursion
Components

In this subsection, we present a powerful and effi-
cient method for proving termination by using no-
tions of (semi-)reduction pairs and the subterm cri-
terion, which prove that recursion components do
not loop.

First, we introduce the notion of (semi-)reduction
pairs according to the literature [22]. The notion of
reduction pairs was introduced in [17], which is a
slight abstraction of weak-reduction order [1]. The
notion of semi-reduction pairs was introduced in
[18].

Definition 3.18 For a predicate P , a relation Υ is
P -closed under substitutions if sθΥtθ for any sub-
stitution θ and terms s, t such that P (s, t) holds.

A pair (&, >) of a quasi-order & and a well-
founded strict order > is said to be a semi-reduction
pair w.r.t. a predicate P if & is closed under leaf-
contexts, & and > are P -closed under substitutions,
and either &·> ⊆ > or >·& ⊆ >. A semi-reduction
pair (&, >) w.r.t. a predicate P is said to be a re-
duction pair w.r.t. P if & is closed under contexts.

Proposition 3.19 Let R be an STRS and C be a
static recursion component. If there exists a reduc-
tion pair (resp. semi-reduction pair) (&, >) w.r.t.
a predicate P satisfying the following conditions,
then C is non-looping.

• P (s, t) holds for any (s, t) ∈ R ∪ C (resp.
(s, t) ∈ Rex ∪ C),

• R ⊆ & (resp. Rex ⊆ &), and

• C ⊆ & ∪ > and C ∩ > 6= ∅.

The argument filtering method, which generates
a reduction pair from a given reduction order, was
introduced in first-order TRSs [1]. The method was
extended to STRSs [18] and will be improved in the
next section. In both the methods in STRSs, as a
predicate P in the definition above, we need to use
left-firmness (cf. Definition 4.3).

Although the path order based on strong com-
putability in [19] generates reduction pairs, the path
order based on the simplification order in [18] does
not generate reduction pairs and only generates
semi-reduction pairs.

1Each node cannot appear twice in a path.

We next introduce the subterm criterion [22] and
the strictly subterm criterion, which are slight im-
provements of the criterion in [15]. Although the
original definition of the codomain of π (see the
following definition) in [15] allows only positive in-
tegers, the improved definition allows sequences of
positive integers [22].

Definition 3.20 ((Strictly) Subterm Criterion)

Let R be an SFP-STRS and C ∈ SRC(R).
We say that C satisfies the subterm criterion if
there exists a function π from DR to non-empty
sequences of positive integers such that

• u|π(root(u)) >esub v|π(root(v)) for some u] →
v] ∈ C, and

• the following conditions hold for any u] → v] ∈
C:

– u|π(root(u)) ≥esub v|π(root(v)),

– (u)p /∈ V for all p ≺ π(root(u)), and

– q 6= ε ⇒ (v)q ∈ CR for all q ≺ π(root(v)).

Specially, we say that C satisfies the strictly subterm
criterion if any u] → v] ∈ C satisfies the following
condition:

• u|π(root(u)) >esub v|π(root(v)),

• (u)p /∈ V for all p ≺ π(root(u)), and

• q 6= ε ⇒ (v)q ∈ CR for all q ≺ π(root(v)).

We can easily see that if C satisfies the strictly
subterm criterion, then any subset of C satisfies the
subterm criterion.

Proposition 3.21 Let R be an STRS and C be a
static recursion component. If C satisfies the sub-
term criterion, then C is non-looping.

From Corollary 3.17, and Proposition 3.19 and
3.21, we obtain the following method for proving
termination of SFP-STRSs.

Theorem 3.22 Let R be an SFP-STRS such that
there exists no infinite path in the static depen-
dency graph. If each C ∈ SRC(R) satisfies one of
the following properties, then R is terminating.

(1) C satisfies the subterm criterion.

(2) There exists a reduction pair (resp. semi-
reduction pair) (&, >) w.r.t. a predicate P
such that P (s, t) holds for any (s, t) ∈ R ∪ C
(resp. (s, t) ∈ Rex ∪ C), R ⊆ & (resp. Rex ⊆
&), C ⊆ & ∪ >, and C ∩ > 6= ∅.

8

(3) There exists a maximal static recursion com-
ponent C ′ such that C ⊆ C ′ and C ′ satisfies
one of the following properties:

(i) C ′ satisfies the strictly subterm criterion.
(ii) There exists a reduction pair (resp. semi-

reduction pair) (&, >) w.r.t. a predicate
P such that P (s, t) holds for any (s, t) ∈
R ∪ C ′ (resp. (s, t) ∈ Rex ∪ C ′), R ⊆ &
(resp. Rex ⊆ &), and C ′ ⊆ >.

In case of |SDP (R)| = n, there exist 2n−1 static
recursion components in the worst case, but the
number of maximal static recursion components is
at most n. Hence, by checking (3) before check-
ing (1) and (2), we can prove the termination more
efficiently. This idea has already been formulated
in [14], and used in early implementations in TRSs
[2, 6].

Example 3.23 Consider the SFP-STRS RsumF

shown in Example 3.10. All C ∈ SRC(RsumF) shown
in Example 3.13 satisfy the subterm criterion by set-
ting π to the underlined parts below (π(foldl) = 3
and π(add) = π(app0) = 1):

{foldl][f, y, cons[x, xs]] → foldl][f, f [y, x], xs]}
{add][s[x], y] → add][x, y]}
{app0][consF[f, xs]] → app0][xs]}

Hence, the termination is shown by Theorem 3.22.

4 Argument Filtering Method

The argument filtering method, designed by elimi-
nating unnecessary subterms, generates a reduction
pair from a given reduction order. Arts and Giesl
first introduced the method on first-order TRSs [1],
Kusakari then extended the method to STRSs [18].

In the argument filtering method in [18], the term
sub[x, y] is transformed into sub[x] after argument
filtering. Thus, the type of sub should be inter-
preted as τ(sub) = N → N after argument fil-
tering. However, when add[x, y] does not change
by argument filtering, the type of add should not
change, that is, τ(add) = N → N → N . Hence,
for a higher-order variable fN→N→N we cannot de-
cide the type of f after argument filtering, because
the type should correspond with both substitutions
{f := add} and {f := sub}. As a consequence,
the argument filtering method in [18] may destroy
the well-typedness of terms. When the method ap-
plies to a reduction order which makes use of type
information, this fact remarkably complicates the
application, and some redundant condition may be
required (cf. [19]).

In this section we improve the argument filter-
ing method. In the new argument filtering method,

the term sub[x, y] is transformed into sub[x,⊥] in-
stead of sub[x]. The method, then, never destroys
the well-typedness. Although the idea is surely sim-
ple, our improvement yields very substantial bene-
fits when combined with reduction orders that make
use of type information. Indeed, in contrast to the
method in [19], we need not individually discuss ap-
plication to each reduction order, and we can comb
out some applied conditions as described later.

Definition 4.1 We prepare the fresh function
symbol ⊥α with τ(⊥α) = α, for each α ∈ S.

An argument filtering function is a function π
such that for any f ∈ Σ, π(f) is a list of positive
integers [i1, . . . , ik] with i1 < · · · < ik ≤ n, where
τ(f) = α1 → · · · → αn → β and β ∈ Snfun . We ex-
tend π over terms as π(a[t1, . . . , tn]) = a[t′1, . . . , t

′
n],

where t′i ≡ ⊥αi
if a ∈ Σ and i /∈ π(a); otherwise

t′i ≡ π(ti). We also define θπ by θπ(x) = π(θ(x)).
For given argument filtering function π and bi-

nary relation >, we define s &π t by π(s) ≥ π(t),
and s >π t by π(s) > π(t).

We often omit the index α in ⊥α whenever no
confusion arises. We hereafter assume that if π(f)
is not defined explicitly then it is intended to be
[1, . . . , n], where τ(f) = α1 → · · ·αn → β and β ∈
Snfun .

In the definition above, it is easily seen that if t
has a type α then so does π(t).

Example 4.2 Let Rdiv be the following STRS.
sub[x, 0] → x
sub[0, y] → 0

sub[s[x], s[y]] → sub[x, y]
div[0, s[y]] → 0

div[s[x], s[y]] → s[div[sub[x, y], s[y]]]

Let π(sub) = [1] for a function symbol sub with
τ(sub) = N → N → N . Then π(sub[x, y]) =
sub[x,⊥N].

Unfortunately, as indicated in [18], &π is not
closed under substitutions. Our improved method
cannot solve this problem. For example, let θ(f) =
foo, π(foo) = [2] and >rpo be a recursive path
order in [19] (cf. Definition 4.6) with the prece-
dence 2 B 1 B 0. Then we have π(f [2, 0]) ≡ f [2, 0],
π(f [1, 1]) ≡ f [1, 1], π(f [2, 0]θ) ≡ π(foo[2, 0]) ≡
foo[⊥, 0], and π(f [1, 1]θ) ≡ π(foo[1, 1]) ≡
foo[⊥, 1]. Thus, we obtain the following counterex-
ample:

f [2, 0] >rpo f [1, 1], but foo[⊥, 0] <rpo foo[⊥, 1].

Hence, the notion of left-firmness was introduced
[18].

9

Definition 4.3 A term t is said to be firmness
if any variable occurs at a leaf position. A pair
(s, t) of terms is said to be left-firmness, denoted
by LF (s, t), if s is firmness.

Definition 4.4 A (semi-)reduction order > satis-
fies the ⊥-condition if t ≥ ⊥α for any tα.

Theorem 4.5 For any (semi-)reduction order >
with ⊥-condition, the pair (&π, >π) is a (semi-
)reduction pair w.r.t. the predicate LF .

Proof. It suffices to show that π(t)θπ ≥ π(tθ) for
any t ≡ a[t1, . . . , tn]. Note that π(s)θπ ≡ π(sθ) for
any firmness term s can be proved as similar to the
proof. These properties show the LF -closedness of
&π, >π under substitutions: π(s) ≥ π(t) ⇒ π(sθ) ≡
π(s)θπ ≥ π(t)θπ ≥ π(tθ) and π(s) > π(t) ⇒
π(sθ) ≡ π(s)θπ > π(t)θπ ≥ π(tθ). Moreover, the
remainder of conditions can be proved similar to
the proof of the early argument filtering method in
[18].

We prove the claim by induction on |t|. From the
induction hypothesis, π(ti)θπ ≥ π(tiθ) for any i.

In case of a ∈ Σ, we suppose that t′i ≡ ⊥ if
i /∈ π(a); otherwise t′i ≡ π(ti), and t′′i ≡ π(tiθ)
if i ∈ π(a); otherwise t′′i ≡ ⊥. Then we have
t′iθπ ≥ t′′i , and hence π(t)θπ ≡ a[t′1θπ, . . . , t′nθπ] ≥
a[t′′1 , . . . , t′′n] ≡ π(tθ).

In case of a ∈ V and root(θ(a)) ∈ V,
we have π(t)θπ ≡ θπ(a)[π(t1)θπ, . . . , π(tn)θπ] ≥
θπ(a)[π(t1θ), . . . , π(tnθ)] ≡ π(θ(a)[t1θ, . . . , tnθ]) ≡
π(tθ).

In case of a ∈ V and root(θ(a)) ∈ Σ, we suppose
that θ(a) = a′[u1, . . . , uk] and t′′i ≡ π(tiθ) if i + k ∈
π(a′); otherwise t′′i ≡ ⊥. Then we have π(ti)θ ≥ t′′i ,
and hence π(t)θπ ≡ θπ(a)[π(t1)θπ, . . . , π(tn)θπ] ≥
θπ(a)[t′′1 , . . . , t′′n] ≡ π(θ(a)[t1θ, . . . , tnθ]) ≡ π(tθ). ¤

The argument filtering method improved in this
paper never destroys the well-typedness. Our im-
provement yields very substantial benefits when
combined with reduction orders that make use of
type information as follows:

Definition 4.6 [19] A precedence B is a strict par-
tial order on Σ. For any s ≡ a[s1, . . . , sn] and
t ≡ a′[t1, . . . , tm], we define s >rpo t if τ(s) and
τ(t) have the same type under identifying all basic
types, and one of the following properties holds:

• τ(s) ∈ B, a B a′ and for all j either s >rpo tj
or ∃i. si ≥rpo tj ,

• a = a′ and {s1, . . . , sn} >mul
rpo {t1, . . . , tm},

where >mul
rpo is the multiset extension of >rpo,

or

• there exists k such that ∃i. si ≥rpo a′[t1, . . . , tk]
and ∀j > k. ∃ij . sij ≥rpo tj .

Proposition 4.7 [19] >+
rpo is a reduction order.

Note that >rpo is not transitive, however this is
not a problem for proving termination.

Since the argument filtering method in [18] may
destroy the well-typedness of terms, the method
with >rpo requires the following strong restriction:

• For any l → r ∈ R and x ∈ V ar(π(l)), if τ(x) ∈
Sfun then for each i ∈ π(root(l)) we have either
x ≡ li or x 6∈ V ar(π(li)).

On the other hand, the new argument filtering
method in this paper does not require such restric-
tions.

Example 4.8 Consider the left-firmness SFP-
STRS Rdiv given in Example 4.2. Then the set
SRC(Rdiv) consists of the following two static re-
cursion components:

{sub][s[x], s[y]] → sub][x, y]}
{div][s[x], s[y]] → div][sub[x, y], s[y]]}

The first component satisfies the subterm criterion.
For the second component, we have

div][s[x], s[y]] >π
rpo div][sub[x, y], s[y]]

sub[x, 0] &π
rpo x

sub[0, y] &π
rpo 0

sub[s[x], s[y]] &π
rpo sub[x, y]

div[0, s[y]] &π
rpo 0

div[s[x], s[y]] &π
rpo s[div[sub[x, y], s[y]]]

with π(sub) = [1] and div B s B sub. Hence, the
termination of Rdiv can be shown by Theorem 3.22
and 4.5.

Example 4.9 Let Rave be the left-firmness SFP-
STRS, which is the union of Rsum, Rdiv and the
following rules: s′[x, y] → s[x]

len → foldl[s′, 0]
ave[xs] → div[sum[xs], len[xs]]

Here Rsum and Rdiv are displayed in the Introduc-
tion and Example 4.8, respectively. Then the func-
tion ave calculates the average x1+···+xn

n for an in-
put list [x1, . . . , xn]. The set SRC(Rave) consists of
the following four static recursion components:

{add][s[x], y] → add][x, y]}
{foldl][f, y, cons[x, xs]] → foldl][f, f [y, x], xs]}
{sub][s[x], s[y]] → sub][x, y]}
{div][s[x], s[y]] → div][sub[x, y], s[y]]}

10

Any static recursion component except for the
last component satisfies the subterm criterion.
However, different than Example 4.8, the non-
loopingness of the last component cannot be shown,
because the constraint Rfoldl ⊆ &π

rpo cannot be
solved.

To show the termination of Rave we need the no-
tion of usable rules that will be introduced in the
next section.

5 Usable Rules with Argu-
ment Filtering

First, we consider why the non-loopingness of the
static recursion component

{div][s[x], s[y]] → div][sub[x, y], s[y]]}

can be shown in Example 4.8, but cannot be shown
in Example 4.9. The reason is that we should solve
the constraint Rfoldl ⊆ &π

rpo in Example 4.9, but
not in Example 4.8. Many programmers may query
why we should orient rules for foldl in order to
show the non-loopingness for div. The notion of
usable rules solves this problem.

The notion of usable rules was introduced in
TRSs [15, 29, 11], which is based on the technique
of interpretation and the notion of Ce-termination
[13, 30]. Afterward we extended the method to
STRSs [26]. By using the usable rules for STRSs,
we can show the non-loopingness for div, because
we can solve the following constraint:

div][s[x], s[y]] >π
rpo div][sub[x, y], s[y]]

sub[x, 0] &π
rpo x

sub[0, y] &π
rpo 0

sub[s[x], s[y]] &π
rpo sub[x, y]

cα[x, y] &π
rpo x for any α ∈ S

cα[x, y] &π
rpo y for any α ∈ S

We can see that the constraint above does not in-
clude Rfoldl ⊆ &π

rpo, which prevents us from show-
ing the termination of the STRS Rave.

Next, we consider the STRS Rsum n of the union
of Rsum and the following rules:

drop[0, yss] → yss
drop[x, nilL] → nilL

drop[s[x], consL[y, yss]] → drop[x, yss]
sum n[v, x, nilL] → v

sum n[v, s[x], consL[xs, xss]]
→ sum n[add[v, sum[xs]], s[x], drop[x, xss]]

Then, the function sum n[0, n, xss] calculates the to-
tal sum of the total sums of xs0, xsn, xs2n, . . . for
an input list of lists xss = [xs0, xs1, . . . , xsm]. The

set SRC(Rsum n) consists of the following four static
recursion components:

{foldl][f, y, cons[x, xs]] → foldl][f, f [y, x], xs]}
{add][s[x], y] → add][x, y]}
{drop][s[x], consL[y, yss]] → drop][x, yss]}
{sum n][v, s[x], consL[xs, xss]]

→ sum n][add[v, sum[xs]], s[x], drop[x, xss]]}

Any static recursion component except for the last
component satisfies the subterm criterion. How-
ever, as in Example 4.9, the non-loopingness of the
last component cannot be shown, because the con-
straint Rfoldl ⊆ &π

rpo cannot be solved. This prob-
lem cannot be solved by usable rules for STRSs [18].

In first-order TRSs, we know that usable rules
can be strengthened by incorporating argument fil-
tering into usable rules [29, 11]. In this section, we
also strengthen usable rules for STRSs [26] by incor-
porating argument filtering into usable rules. Then
we can reduce Rfoldl ⊆ &π

rpo from the constraint
that we should solve, and hence we can prove the
termination of the STRS Rsum n.

Definition 5.1 For any t ≡ a[t1, . . . , tn], we define
Subπ(t) as {t} ∪

∪
i∈I Subπ(ti), where I = π(a) if

a ∈ Σ; otherwise I = {1, . . . , n}, and Subint
V,π(t) as

{t′ ∈ Subπ(t) | root(t′) ∈ V, args(t′) 6= ∅}.

Definition 5.2 For each pair 〈u, v〉 of terms, the
subset U ′(〈u, v〉, π) of STRS R is defined by l → r ∈
U ′(〈u, v〉, π) iff l → r satisfies one of the following
conditions:

(1) root(l) = root(v′) and τ(l) wS τ(v′) for some
v′ ∈ Subπ(v),

(2) τ(root(l)) wS τ(root(v′)) and τ(l) wS τ(v′) for
some v′ ∈ Subint

V,π(v), or

(3) τ(l) wS τ(root(u′)) for some u′ ∈ Subint
V,π(u)

with root(u′) ∈ V ar(v).

We define the set U(〈u, v〉, π) by the smallest
set satisfying U ′(〈u, v〉ex↑, π) ⊆ U(〈u, v〉, π), and
U(〈l, r〉ex↑, π) ⊆ U(〈u, v〉, π) whenever l → r ∈
U(〈u, v〉, π). For each set C of pairs of terms,
we define usable rules with argument filtering π by
U(C, π) =

∪
〈u,v〉∈C U(〈u, v〉, π).

Notice that U(C, π) is the same as the usable rules
U(C) without argument filtering in [26] whenever
π(f) = [1, . . . , n] for any fα1→···αn→β ∈ Σ with
β ∈ Snfun .

Example 5.3 We suppose that C is the static re-
cursion component

{sum n][v, s[x], consL[xs, xss]]
→ sum n][add[v, sum[xs]], s[x], drop[x, xss]]}

11

of STRS RRsum n
, which is the second example in

the beginning of this section. Let π(sum n]) = [3].
Then the set U(C, π) consists of only three rules for
drop.

Note that the usable rules U(C) without argu-
ment filtering in [26] consist of eight rules for drop,
add, sum, and foldl.

In the following, we assume that R is a finitely
branching STRS, C is a static recursion component,
and t ∈ ∆ iff root(t) = root(l) and τ(l) wS τ(t) for
some l → r ∈ R \ U(C, π).

Notice that any redex for (R \U(C, π))ex is in ∆.
That is, if t ≡ lθ for some l → r ∈ (R \ U(C, π))ex

and θ, then t ∈ ∆.
By eliminating rules in R \ U(C, π), the notion

of usable rules reduces the constraints for non-
loopingness. In this elimination, we must carefully
analyze a dependency between rules. In the defi-
nition of U(C, π), condition (1) is for analysis of a
dependency through defined symbols, which is the
same analysis as first-order settings. Conditions (2)
and (3) are for analysis of a dependency through
higher-order variables in right- and left-hand sides,
respectively. Condition (3) seems to be unnatural
because it is for left-hand sides. However, condition
(3) is necessary for technical reasons (cf. Lemma
5.6).

Lemma 5.4 For each l → r ∈ C ∪ U(C, π)ex and
θ, the following properties hold:

(1) vθ /∈ ∆ for all v ∈ Subπ(r) with root(v) ∈ Σ,

(2) vθ /∈ ∆ for all v ∈ Subint
V,π(r), and

(3) root(u)θ /∈ ∆ for all u ∈ Subint
V,π(l) with

root(u) ∈ V ar(r).

Proof. (1) Assume that vθ ∈ ∆. Then there exists
l′ → r′ ∈ R \ U(C, π) such that root(vθ) = root(l′)
and τ(l′) wS τ(vθ). Since root(v) ∈ Σ, we have
root(v) = root(l′). Since τ(l′) wS τ(vθ) = τ(v), we
have l′ → r′ ∈ U ′(〈l, r〉ex↑, π). Hence, l′ → r′ ∈
U(C, π), which is a contradiction.
(2) Assume that vθ ∈ ∆. Then there exists l′ →
r′ ∈ R \ U(C, π) such that root(vθ) = root(l′) and
τ(l′) wS τ(vθ). Since root(v) ∈ V and root(vθ) =
root(l′), we have τ(root(l′)) wS τ(root(v)). Since
τ(l′) wS τ(vθ) = τ(v), we have l′ → r′ ∈
U ′(〈l, r〉ex↑, π). Hence, l′ → r′ ∈ U(C, π), which
is a contradiction.
(3) Assume that root(u)θ ∈ ∆. Then there exists
l′ → r′ ∈ R \ U(C, π) such that root(root(u)θ) =
root(l′) and τ(l′) wS τ(root(u)θ). Thus, we have
l′ → r′ ∈ U ′(〈l, r〉ex↑, π). Hence, l′ → r′ ∈ U(C, π),
which is a contradiction. ¤

Definition 5.5 For each α ∈ S, we prepare the
fresh function symbol ⊥α and cα with τ(⊥α) = α
and τ(cα) = α → α → α. We define the STRS Ce

by {cα[x, y] → x | α ∈ S} ∪ {cα[x, y] → y | α ∈ S}.
The interpretation Iπ is a mapping from ter-

minating terms in Tτ (Σ,V) to terms in Tτ (Σ ∪∪
α∈S{⊥α, cα},V); for each tα ≡ a[tα1

1 , . . . , tαn
n],

Iπ(t) is defined as follows:{
a[t′1, . . . , t

′
n] if t /∈ ∆

cα[a[t′1, . . . , t
′
n], Redα({Iπ(t′) | t −→

R
t′})] if t ∈ ∆

where t′i ≡ Iπ(ti) if either a ∈ V or a ∈ Σ and
i ∈ π(a); otherwise t′i ≡ ⊥αi , and

Redα(T) =
{

⊥α if T = ∅
cα[least(T), Red(T \ {t})] if T 6= ∅

Thanks to the well-ordering theorem, we assume an
arbitrary but fixed well-order on Tτ (Σ,V). We de-
note by least(T) the least element in T with respect
to the well-order. For each terminating substitu-
tion θ, we define θIπ by θIπ (x) = Iπ(θ(x)) for each
x ∈ V.

The interpretation Iπ is inductively defined on
terminating terms with respect to >sub∪−→

R
, which

is well-founded on terminating terms. Moreover,
the set {Iπ(t′) | t −→

R
t′} is finite because R is finitely

branching. Hence, the above definition of Iπ is well-
defined.

Lemma 5.6 Let l → r ∈ C ∪U(C, π)ex and θ be a
substitution such that lθ is terminating. We define
σ as σ(x) = u if x /∈ V ar(r) and θIπ (x) has the
form c[u, T]; otherwise σ(x) = θIπ (x). Then we
have Iπ(lθ) ∗−→

Ce
π(l)σ,

Proof. We prove ∀t ∈ Subπ(l).Iπ(tθ) ∗−→
Ce

π(t)σ by
induction on t. Let t ≡ a[t1, . . . , tn].

• In case of a ∈ Σ: We suppose that t′i ≡
π(ti) and t′′i ≡ Iπ(tiθ) if i ∈ π(a); other-
wise t′i ≡ t′′i ≡ ⊥. Then we have Iπ(tθ) ≡
Iπ(a[t1θ, . . . , tnθ]) (≡ ∪ −→

Ce
) a[t′′1 , . . . , t′′n] ∗−→

Ce

a[t′1σ, . . . , t′nσ] ≡ π(t)σ.

• In case that a ∈ V and σ(a) does not have
the form c[u, T]: We suppose that θ(a) ≡
a′[u1, . . . , uk], and t′i ≡ π(ti) and t′′i ≡ Iπ(tiθ)
if either a′ ∈ V or a′ ∈ Σ and i + k ∈
π(a′); otherwise t′i ≡ t′′i ≡ ⊥. Then we
have Iπ(tθ) ≡ Iπ(θ(a)[t1θ, . . . , tnθ]) (≡ ∪ −→

Ce
)

σ(a)[t′′1 , . . . , t′′n] ∗−→
Ce

σ(a)[t′1σ, . . . , t′nσ] ≡ π(t)σ.

• In case that a ∈ V and σ(a) has the form
c[u, T]: From the definition of σ, θIπ (a) has
the form c[u, T] and a ∈ V ar(r). Since θIπ (a)
has the form c[u, T], we have θ(a) ∈ ∆.

12

Assume that n > 0. Since t ∈ Subπ(l) and
a ∈ V, we have t ∈ Subint

V,π(l). From Lemma
5.4 (3), we have θ(a) /∈ ∆, which leads to a
contradiction. Hence we have n = 0, that is,
t ≡ a[]. Therefore we have Iπ(tθ) ≡ Iπ(aθ) ≡
aθIπ ≡ tσ. ¤

Lemma 5.7 Let l → r ∈ C ∪U(C, π)ex and θ be a
substitution such that rθ is terminating. Then we
have Iπ(rθ) ≡ π(r)θIπ .

Proof. We prove ∀t ∈ Subπ(r).Iπ(tθ) ≡ π(t)θIπ by
induction on t. Let t ≡ a[t1, . . . , tn].

• In case of a ∈ Σ, we suppose that t′i ≡
π(ti) and t′′i ≡ Iπ(tiθ) if i ∈ π(a); otherwise
t′i ≡ t′′i ≡ ⊥. From Lemma 5.4 (1), we have
Iπ(tθ) ≡ Iπ(a[t1θ, . . . , tnθ]) ≡ a[t′′1 , . . . , t′′n] ≡
a[t′1θ

Iπ , . . . , t′nθIπ] ≡ π(t)θIπ .

• In case of a ∈ V and tθ /∈ ∆, we suppose that
θ(a) ≡ a′[u1, . . . , uk], and t′i ≡ π(ti) and t′′i ≡
Iπ(tiθ) if either a′ ∈ V or a′ ∈ Σ and i + k ∈
π(a′); otherwise t′i ≡ t′′i ≡ ⊥.

Assume that aθ ∈ ∆. Then there exists
l′ → r′ ∈ R \ U(C, π) such that root(aθ) =
root(l′) and τ(l′) wS τ(aθ). Since root(tθ) =
root(aθ) = root(l′) and τ(l′) wS τ(aθ) wS
τ(tθ), we have tθ ∈ ∆, which leads to a con-
tradiction. Thus, we have aθ /∈ ∆. Hence
we have Iπ(tθ) ≡ Iπ(θ(a)[t1θ, . . . , tnθ]) ≡
θIπ (a)[t′′1 , . . . , t′′n] ≡ θIπ (a)[t′1θ

Iπ , . . . , t′nθIπ] ≡
π(t)θIπ .

• In case of a ∈ V and tθ ∈ ∆, we have t ≡ a[]
from Lemma 5.4 (2). Hence Iπ(tθ) ≡ Iπ(aθ) ≡
aθIπ ≡ tθIπ . ¤

Lemma 5.8 If s −→
R

t and s is terminating then
Iπ(s) ∗−−−−−−−−→

π(U(C,π))∪Ce
Iπ(t).

Proof. From Proposition 2.1, there exist a rule l →
r ∈ Rex, a leaf-context C[] and substitution θ such
that s ≡ C[lθ] and t ≡ C[rθ]. We prove the claim
by induction on C[]. Because C[] is a leaf-context,
it suffices to show the following cases.

• Suppose that C[] ≡ ¤ and s /∈ ∆. Then l →
r ∈ U(C, π)ex. We define the substitution σ
as similar to Lemma 5.6. From Lemma 5.6
and 5.7, we have Iπ(lθ) ∗−→

Ce
π(l)σ −−−−−−→

π(U(C,π))

π(r)σ ≡ π(r)θIπ ≡ Iπ(rθ).

• Suppose that C[] ≡ a[. . . , ui−1, C
′[], ui+1, . . .],

s /∈ ∆, a ∈ Σ and i /∈ π(a). Then t /∈ ∆ and
hence Iπ(C[lθ]) ≡ a[. . . ,⊥, . . .] ≡ Iπ(C[rθ]).

• Suppose that C[] ≡ a[. . . , ui−1, C
′[], ui+1, . . .],

s /∈ ∆, and either a ∈ V or a ∈ Σ
and i ∈ π(a). Then t /∈ ∆, and hence
Iπ(C[lθ]) ≡ a[. . . , Iπ(C ′[lθ]), . . .] ∗−−−−−−−−→

π(U(C,π))∪Ce

a[. . . , Iπ(C ′[rθ]), . . .] ≡ Iπ(C[rθ]).

• Suppose that s ∈ ∆. Then Iπ(C[lθ]) −→
Ce

Red({Iπ(v) | C[lθ] −→
R

v}) +−→
Ce

Iπ(C[rθ]). ¤

Theorem 5.9 Let R be a finitely branching SFP-
STRS, C be a static recursion component, and π be
an argument filtering function such that C∪U(C, π)
is left-firmness. If there exists a reduction order
(resp. semi-reduction order) > satisfying the ⊥-
condition and the following conditions, then C is
non-looping.

(i) Ce ⊆ > (resp. Cex
e ⊆ >),

(ii) U(C, π) ⊆ &π (resp. U(C, π)ex ⊆ &π), and

(iii) C ⊆ &π and C ∩ >π 6= ∅.

Proof. We show only the case that > is a reduction
order.

Assume that pairs in C generate an infinite chain
u]

0 → v]
0, u

]
1 → v]

1, u
]
2 → v]

2, · · · in which every
u] → v] ∈ C occurs infinitely many times, and
let θ0, θ1, . . . be substitutions such that v]

iθi
∗−→
R

u]
i+1θi+1 and uiθi, viθi ∈ T args

SN (R) for each i.
Let i be an arbitrary number. From Lemma 5.7,

we have π(v]
i)θ

Iπ
i ≡ Iπ(v]

iθi). From Lemma 5.8,
we have Iπ(v]

iθi) ∗−−−−−−−−→
π(U(C,π))∪Ce

I(u]
i+1θi+1). From

Lemma 5.6, we have Iπ(u]
i+1θi+1) ∗−→

Ce
π(u]

i+1)σi+1,
where the substitution σi+1 is generated from θIπ

i+1

as similar to Lemma 5.6. From the construction of
σi+1, we have π(v]

i+1)σi+1 ≡ π(v]
i+1)θ

Iπ
i+1. Hence

we have π(v]
i)θ

Iπ
i ≡ Iπ(v]

iθi) & I(u]
i+1θi+1) &

π(u]
i+1)σi+1 & π(v]

i+1)σi+1 ≡ π(v]
i+1)θ

Iπ
i+1 for any

i. Moreover, from C ∩ >π 6= ∅, we have π(v]
j)θ

Iπ
j >

π(v]
j+1)θ

Iπ
j+1 for infinitely many j. This contradicts

the well-foundedness of >. ¤

Example 5.10 Consider the finitely branching
and left-firmness SFP-STRS Rsum n. As previously
mentioned, any static recursion component except
for the following component satisfies the subterm
criterion:

{sum n][v, s[x], consL[xs, xss]]
→ sum n][add[v, sum[xs]], s[x], drop[x, xss]]}

We suppose that C is this static recursion compo-
nent as in Example 5.3. Suppose that π(sum n]) =
[3] and π(drop) = [2]. Then the set U(C, π) consists
of only three rules for drop described in Example

13

5.3. Hence it suffices to show that the following
constraint can be solved:

sum n][v, s[x], consL[xs, xss]]
> sum n][add[v, sum[xs]], s[x], drop[x, xss]]

drop[0, yss] & yss
drop[x, nilL] & nilL

drop[s[x], consL[y, yss]] & drop[x, yss]
cα[x, y] & x for any α ∈ S
cα[x, y] & y for any α ∈ S

Let B be the precedence consL B drop. Then
(&π

rpo, >
π
rpo) can solve the constraint above. Hence

the non-loopingness of C follows from Theorem 5.9.
Therefore the termination of STRS Rsum n follows
from Corollary 3.17.

6 Concluding Remarks

In this paper, we presented powerful methods for
proving termination of STRSs. We summarize these
methods by incorporating Theorem 5.9 into Theo-
rem 3.22.

Corollary 6.1 Let R be an SFP-STRS such that
there exists no infinite path in the static depen-
dency graph. For any C ∈ SRC(R),

• C satisfies one of the properties of (1), (2), or
(3) in Theorem 3.22, or

• R is finitely branching, and there exist a re-
duction order (resp. semi-reduction order) >
and an argument filtering function π such that
> satisfies the ⊥-condition, C ∪U(C, π) is left-
firmness, and properties (i), (ii), and (iii) in
Theorem 5.9 hold.

Then R is terminating.

A difficulty of studying static dependency pair
methods arises, because strong computability is
not closed under the subterm relation. Hence, to
strengthen static dependency pair methods, guar-
anteeing the strong computability of subterms as
far as possible is necessary. In this paper, we in-
troduced the notion of safe function-passing, which
expands the application range of static depen-
dency pair methods, more than the notion of plain
function-passing [22]. To extend the applicable
scope to static dependency pair methods other than
safe function-passing, using the notion of pattern
computable closure [4] might be interesting. This is
a topic for future study.

The argument filtering method improved in this
paper never destroys the well-typedness, although
the argument filtering method in [18] may destroy
the well-typedness of terms. Our improvement
eliminates a strong restriction (see the discussion

below Proposition 4.7). Moreover, although the
method in [18] can only combine with reduction
orders on a superset of simply-typed terms [19],
the method in this paper can combine with any
reduction orders on simply-typed terms. Since re-
duction orders for simply-typed settings are usually
designed on simply-typed terms, our improvement
yields very substantial benefits.

The notion of usable rules reduces the constraints
for proving non-loopingness. In this paper, we
strengthen the notion by incorporating argument
filtering into usable rules. Usable rules with argu-
ment filtering decrease the constraints more effec-
tively than usable rules without argument filtering
[26]. Using usable rules with argument filtering, re-
duction pairs must be designed by the argument
filtering method, which requires a left-firmness re-
striction. Usable rules without argument filtering
can use any reduction pair. Although all existing
reduction pairs in STRSs have been designed by the
argument filtering method, if other methods design
reduction pairs without the left-firmness restriction,
then usable rules without argument filtering may
revive.

In first-order TRSs, many termination provers
have recently has developed [23]. These systems
efficiently solve constraints by using an SAT solver.
Developing a termination prover for STRSs based
on our results will also be future work. We also hope
to see the results of this research applied to induc-
tive reasoning [20] and the Knuth-Bendix procedure
[21] on STRSs.

Acknowledgments

We would like to thank the anonymous referees for
their helpful comments.

This research was partially supported by MEXT
KAKENHI #20500008, #18500011, #20300010,
and by the Kayamori Foundation of Informational
Science Advancement.

References

[1] Arts,T., Giesl,J.: Termination of Term Rewrit-
ing Using Dependency Pairs. Theoretical Com-
puter Science, Vol.236, pp.133–178, 2000.

[2] Arts,T.: System Description: The Dependency
Pair Method. In: Proc. of the 11th Int. Conf. on
Rewriting Techniques and Applications, LNCS
1833 (RTA2000), pp.261–264, 2000.

[3] Blanqui,F.: Termination and Confluence of
Higher-Order Rewrite Systems. In: Proc. of the
11th Int. Conf. on Rewriting Techniques and

14

Applications, LNCS 1833 (RTA2000), pp.47–61,
2000.

[4] Blanqui,F.: Higher-order Dependency Pairs. In:
Proc. of the 8th Int. Workshop on Termination
(WST06), pp.22–26, 2006.

[5] Dershowitz,N.: Orderings for Term-Rewriting
Systems. Theoretical Computer Science,
vol.17(3), pp.279–301, 1982.

[6] Contejean,C., Marché,C, Monate,B., Ur-
bain,X.: CiME version 2, 2000. Available at
http://cime.lri.fr/

[7] Giesl,J., Thiemann,R., Schneider-Kamp,P.,
Falke,S.: Improving Dependency Pairs. In:
Proc. of the 10th Int. Conf. on Logic for
Programming, Artificial Intelligence and Rea-
soning, LNAI 2850 (LPAR2003), pp.165–179,
2003.

[8] Giesl,J., Thiemann,R., Schneider-Kamp,P.,
Falke,S.: Automated Termination Proofs with
AProVE. In: Proc. of the 15th Int. Conf. on
Rewriting Techniques and Applications, LNCS
3091 (RTA2004), pp.210-220, 2004.

[9] Giesl,J., Thiemann,R., Schneider-Kamp,P.:
The Dependency Pair Framework: Combining
Techniques for Automated Termination Proofs.
In: Proc. of the 11th Int. Conf. on Logic for
Programming, Artificial Intelligence, and Rea-
soning, LNCS 3452 (LPAR2004), pp.301–331,
2005.

[10] Giesl,J., Thiemann,R., Schneider-Kamp,P.:
Proving and Disproving Termination of Higher-
Order Functions. In: Proc. the 5th Int. Work-
shop on Frontiers of Combining Systems, LNAI
3717 (FroCoS’05), pp.216–231, 2005.

[11] Giesl,J., Thiemann,R., Schneider-Kamp,P.,
Falke,S.: Mechanizing and Improving Depen-
dency Pairs. Journal of Automated Reasoning,
Vol.37(3), pp.155–203, 2006.

[12] Girard,J.-Y.: Interprétation fonctionnelle et
élimination des coupures de l’arithmétique
d’ordre supérieur. Ph.D. Thesis, University of
Paris VII, 1972.

[13] Gramlich,G.: Generalized Sufficient Condi-
tions for Modular Termination of Rewriting.
Applicable Algebra in Engineering, Communi-
cation and Computing, Vol.5, pp.131–158, 1994.

[14] Hirokawa,N., Middeldorp,A.: Automating the
Dependency Pair Method. In: Proc. of the 19th
Int. Conf. on Automated Deduction, LNAI 2741
(CADE03), pp.32–46, 2003.

[15] Hirokawa,N., Middeldorp,A.: Dependency
Pairs Revisited. In: Proc. of the 15th Int.
Conf. on Rewriting Techniques and Applica-
tions, LNCS 3091 (RTA2004), pp.249–268,
2004.

[16] Jouannaud,J.-P., Rubio,A.: The Higher-Order
Recursive Path Ordering. In: Proc. of 14th An-
nual IEEE Symposium on Logic in Computer
Science, IEEE Comp. Sc. Press, pp.402–411,
1999.

[17] Kusakari,K., Nakamura,M., Toyama,Y.: Argu-
ment Filtering Transformation. In Proc. of Int.
Conf. on Principles and Practice of Declarative
Programming, LNCS 1702 (PPDP’99), pp.47–
61, 1999.

[18] Kusakari,K.: On Proving Termination of Term
Rewriting Systems with Higher-Order Vari-
ables. IPSJ Trans. on Programming, Vol.42,
No.SIG 7 (PRO 11), pp.35–45, 2001.

[19] Kusakari,K.: Higher-Order Path Orders based
on Computability. IEICE Transactions on
Information and Systems, Vol.E87-D, No.2,
pp.352–359, 2004.

[20] Kusakari,K., Sakai,M., Sakabe,T.: Primi-
tive Inductive Theorems Bridge Implicit In-
duction Methods and Inductive Theorems in
Higher-Order Rewriting. IEICE Transactions
on Information and Systems, Vol.E88-D, No.12,
pp.2715–2726, 2005.

[21] Kusakari,K., Chiba,Y.: A Higher-Order
Knuth-Bendix Procedure and its Applications.
IEICE Transactions on Information and Sys-
tems, Vol.E90-D, No.4, pp.707–715, 2007.

[22] Kusakari,K., Sakai,M.: Enhancing Depen-
dency Pair Method using Strong Computabil-
ity in Simply-Typed Term Rewriting Systems,
Applicable Algebra in Engineering, Communica-
tion and Computing, Vol.18, No.5, pp.407–431,
2007.

[23] Marché,C., Zantema,M.: The Termination
Competition, In: Proc. of the 18th Int. Conf. on
Rewriting Techniques and Applications, LNCS
4533 (RTA2007), pp.303–313, 2007.

[24] Sakai,M., Watanabe,Y., Sakabe,T.: Depen-
dency Pair Method for Proving Termination of
Higher-Order Rewrite Systems. IEICE Transac-
tions on Information and Systems, Vol.E84-D,
No.8, pp.1025–1032, 2001.

[25] Sakai,M., Kusakari,K.: On Dependency Pair
Method for Proving Termination of Higher-
Order Rewrite Systems. IEICE Transactions

15

on Information and Systems, Vol.E88-D, No.3,
pp.583–593, 2005.

[26] Sakurai,T., Kusakari,K., Sakai,M., Sak-
abe,T., Nishida,N.: Usable Rules and Labeling
Product-Typed Terms for Dependency Pair
Method in Simply-Typed Term Rewriting
Systems. IEICE Transactions on Information
and Systems, Vol.J90-D, No.4, pp.978–989,
2007. (in Japanese)

[27] Tait,T.T.: Intensional Interpretation of Func-
tionals of Finite Type. Journal of Symbolic Logic
32, pp.198–212, 1967.

[28] Terese: Term Rewriting Systems. Cambridge
Tracts in Theoretical Computer Science, Vol.55,
Cambridge University Press, 2003.

[29] Thiemann,R., Giesl,J., Schneider-Kamp,P.:
Improved Modular Termination Proofs Using
Dependency Pairs. In: Proc. of the 2nd Int.
Joint Conf. on Automated Reasoning, LNAI
3097 (IJCAR2004), pp.75–90, 2004.

[30] Urbain,X., Modular & Incremental Automated
Termination Proofs. Journal of Automated Rea-
soning, Vol.32(4), pp.315–355, 2004.

16

