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1 Introduction

A term rewriting system (TRS) is a computational
model that provides operational semantics for func-
tional programs [22]. A TRS cannot, however,
directly handle higher-order functions, which are
widely used in functional programming languages.
Simply-typed term rewriting systems (STRSs) [12]
and higher-order rewrite systems (HRSs) [17] have
been introduced to extend TRSs. These rewriting
systems can directly handle higher-order functions.
For example, a typical higher-order function foldl
can be represented by the following HRS Rfoldl: foldl(λxy.F (x, y), X, nil) → X

foldl(λxy.F (x, y), X, cons(Y,L))
→ foldl(λxy.F (x, y), F (X,Y ), L)

HRSs can represent anonymous functions because
HRSs have a λ-abstraction syntax, which STRSs
do not. For instance, an anonymous function
λxy.add(x, mul(y, y)) is used in the HRS Rsqsum,
which is the union of Rfoldl and the following rules:

add(0, Y ) → Y
add(s(X), Y ) → s(add(X,Y ))
mul(0, Y ) → 0
mul(s(X), Y ) → add(mul(X,Y ), Y )
sqsum(L) → foldl(λxy.add(x, mul(y, y)), 0, L)

Here, the function sqsum returns the square sum
x2

1 +x2
2 + · · ·+x2

n from an input list [x1, x2, . . . , xn].

As a method for proving termination of TRSs,
Arts and Giesl proposed the dependency pair
method for TRSs based on recursive structure anal-
ysis [1], which was then extended to STRSs [12], and
to HRSs [18].

In higher-order settings, there are two kinds of
analysis for recursive structures. One is dynamic
analysis, and the other is static analysis. The ex-
tensions in [12] and [18] analyze dynamic recur-
sive structures based on function-call dependency
relationships, but not on relationships that may
be extracted syntactically from function definitions.
When a program runs, some functions can be sub-
stituted for higher-order variables. Dynamic re-
cursive structure analysis considers dependencies
through higher-order variables. Static recursive
structure analysis on the other hand, does not con-
sider such dependencies.

For example, consider the HRS Rsqsum. The dy-
namic dependency pair method in [18] extracts the
following 9 pairs, called dynamic dependency pairs:
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:

foldl](λxy.F (x, y), X, cons(Y, L))

→ foldl](λxy.F (x, y), F (X, Y ), L) (a)

foldl](λxy.F (x, y), X, cons(Y, L)) → F (cx, cy) (b)

foldl](λxy.F (x, y), X, cons(Y, L)) → F (X, Y ) (c)

add](s(X), Y ) → add](X, Y ) (d)

mul](s(X), Y ) → add](mul(X, Y ), Y ) (e)

mul](s(X), Y ) → mul](X, Y ) (f)

sqsum](L) → foldl](λxy.add(x, mul(y, y)), 0, L) (g)

sqsum](L) → add](cx, mul(cy, cy)) (h)

sqsum](L) → mul](cy, cy) (i)
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Here cx, cy are fresh constants corresponding to the
bound variables x and y. The dynamic dependency
pair method returns the following 15 components,
called dynamic recursion components:

{(a)}, {(b)}, {(c)}, {(d)}, {(f)}, {(a), (b)},
{(a), (c)}, {(b), (c)}, {(b), (g)}, {(c), (g)},
{(a), (b), (c)}, {(a), (b), (g)}, {(a), (c), (g)},
{(b), (c), (g)}, {(a), (b), (c), (g)}


It is intuitive that this recursive structure analysis
may be unnatural and intractable. The problem
is caused by function-call dependency relationships
through the higher-order variable F .

The static dependency pair method, which is
based on definition dependency relationships, can
solve the unnatural and intractable problem above.
Since the static dependency pair method can ignore
terms headed by a higher-order variable which are
difficult to handle, in this meaning the static depen-
dency pair method is more natural and more power-
ful than the dynamic dependency pair method. In
fact, the static dependency pair method presented
in this paper shows that Rsqsum only has the follow-
ing 3 static recursion components:{

foldl](λxy.F (x, y), X, cons(Y,L))
→ foldl](λxy.F (x, y), F (X,Y ), L){

add](s(X), Y ) → add](X,Y ){
mul](s(X), Y ) → mul](X,Y )

The first result for the static dependency pair
method was given by Sakai and Kusakari [19].
However, this result demanded that target HRSs
be either ‘strongly linear’ or ‘non-nested’, which
is a very strong restriction. By reconstructing a
dependency pair method based on the notion of
strong computability, Kusakari and Sakai proposed
the static dependency pair method for STRSs and
showed that the method is sound for plain function-
passing STRSs [13]. Note that strong computabil-
ity was introduced for proving termination in typed
λ-calculus, which is a stronger condition than the
property of termination [7, 21]. ‘Plain function-
passing’ means that every higher-order variable oc-
curs in an argument position on the left-hand side.
Since many non-artificial functional programs are
plain function-passing, this method has a general
versatility. In this paper, we extend the static
dependency pair method and the notion of plain
function-passing to HRSs. Since the difference be-
tween STRSs and HRSs is the existence of anony-
mous functions (i.e. λ-abstraction), extension is
necessary. We show that our static dependency pair
method works well on plain function-passing HRSs
without new restrictions.

When proving termination by dependency pair
methods, non-loopingness should be shown for each

recursion component. The notion of the subterm
criterion [8] is frequently utilized, as is that of a
reduction pair [11], which is an abstraction of the
weak-reduction order [1]. The subterm criterion
was slightly improved by extending the subterms
permitted by the criterion [13]. Since the subterm
criterion and reduction pairs are effective in termi-
nation proofs, we also reformulate these notions for
HRSs. An effective and efficient method of prov-
ing termination in plain function-passing HRSs is
obtained as a result. These results can be used to
prove the termination of Rsqsum, which cannot be
achieved with the dynamic dependency pair method
in [18]. It can easily be seen that each static recur-
sion component satisfies the subterm criterion in
the underlined positions:{

foldl](λxy.F (x, y), X, cons(Y,L))
→ foldl](λxy.F (x, y), F (X,Y ), L){

add](s(X), Y ) → add](X,Y ){
mul](s(X), Y ) → mul](X,Y )

The termination of Rsqsum can thus be shown easily.
The remainder of this paper is organized as fol-

lows. The next section provides preliminaries re-
quired later in the paper. In Section 3, we introduce
the notion of strong computability, which provides a
theoretical rationale for the static dependency pair
method. In Section 4, we describe the notion of
plain function-passing. In Section 5, we present the
static dependency pair method for plain function-
passing HRSs, the soundness of which is guaranteed
by the notion of strong computability. In Section 6,
we introduce the notions of the reduction pair and
the subterm criterion in order to prove the non-
loopingness of static recursion components. Con-
cluding remarks are presented in Section 7.

2 Preliminaries

In this section, we give preliminaries needed later
on. We assume that the reader is familiar with no-
tions for TRSs and HRSs [22].

The set S of simple types is generated from the
set B of basic types by the type constructor →.
A functional type or a higher-order type is a sim-
ple type of the form α → β. We denote by Vα

the set of variables of type α, and denote by Σα

the set of function symbols of type α. We define
V =

∪
α∈S Vα and Σ =

∪
α∈S Σα. We assume that

the sets of variables and function symbols are dis-
joint. The set T pre

α of simply-typed preterms with
simple type α is generated from sets V ∪ Σ by λ-
abstraction and λ-application. We denote by t↓ the
η-long β-normal form of a simply-typed preterm
t. The set Tα of simply-typed terms with a sim-
ple type α is defined as {t↓ | t ∈ T pre

α }. We de-
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note type(t) = α if t ∈ Tα. We also define the
set T of simply-typed terms by

∪
α∈S Tα, and the

set TB of basic typed terms by
∪

α∈B Tα. We write
tα to stand for t ∈ Tα. Any term in η-long β-
normal form is of the form λx1 · · ·xm.a t1 · · · tn,
where a is a variable or a function symbol. We re-
mark that λx1 · · ·xm.a t1 · · · tn is denoted with
λx1 · · ·xm.a(t1, . . . , tn) or λxm.a(tn) in short. The
α-equality of terms is denoted by ≡. For a simply-
typed term t ≡ λxm.a(tn), the symbol a, denoted
by top(t), is said to be the top symbol of t, and
the set {t1, . . . , tn}, denoted by args(t), is said to
be arguments of t. The set of free variables in
t denoted by FV (t). We assume for convenience
that bound variables in a term are all different,
and are disjoint from free variables. We define
the set Sub(t) of subterms of t by {t} ∪ Sub(s) if
t ≡ λx.s; {t} ∪

∪n
i=1 Sub(ti) if t ≡ a(t1, . . . , tn).

We use t ≥sub s to represent s ∈ Sub(t), and
define t >sub s by t ≥sub s and t 6≡ s. The
set of positions of a term t is the set Pos(t) of
strings over positive integers, which is inductively
defined as Pos(λx.t) = {ε} ∪ {1p | p ∈ Pos(t)} and
Pos(a(t1, . . . , tn)) = {ε} ∪

∪n
i=1{ip | p ∈ Pos(ti)}.

The prefix order ≺ on positions is defined by p ≺ q
iff pw = q for some w ( 6= ε). The subterm of t at
position p is denoted by t|p.

A term containing a special constant ¤α of type α
is called a context, denoted by C[ ]. We use C[t] for
the term obtained from C[ ] by replacing ¤α with
tα. A substitution θ is a mapping from variables to
terms such that θ(X) has a same type of X for each
variable X. We define Dom(θ) = {X | X 6≡ θ(X)}.
A substitution is naturally extended to a mapping
from terms to terms.

A rewrite rule is a pair (l, r) of terms, denoted by
l → r, such that top(l) ∈ Σ, type(l) = type(r) ∈ B
and FV (l) ⊇ FV (r)1. A higher-order rewrite sys-
tem (HRS) is a set of rules. The reduction relation
−→

R
of an HRS R is defined by s −→

R
t iff s ≡ C[lθ↓]

and t ≡ C[rθ↓] for some rule l → r ∈ R, context C[ ]
and substitution θ. The transitive-reflexive closure
of −→

R
is denoted by ∗−→

R
.

Proposition 2.1 [15] If s ∗−→
R

t then sθ↓ ∗−→
R

tθ↓.

A term t is said to be terminating or strongly nor-
malizing in an HRS R, denoted by SN(R, t), if there
is no infinite sequence of R steps starting from t.
We simply denote SN(R) if SN(R, t) holds for any
term t. We also define TSN (R) = {t | SN(R, t)},
T¬SN (R) = T \ TSN (R), and T args

SN (R) = {t | ∀u ∈
args(t).SN(R, u)}.

1In order to guarantee the decidability of higher-order
pattern-matching, Nipkow restricts rewrite rules by the no-
tion of pattern [17]. Such a restriction, however, is not nec-
essary to our study.

All top symbols of the left-hand sides of rules
in an HRS R, denoted by DR, are called defined,
whereas all other function symbols, denoted by CR,
are constructors. We define the marked term t] by
a](t1, . . . , tn) if t has a form a(t1, . . . , tn) with a ∈
DR; otherwise t] ≡ t. Here a] is called a marked
symbol.

3 Strong Computability

In this section, we define the notion of strong com-
putability, introduced for proving termination in
typed λ-calculus, which is a stronger condition than
the property of termination [7, 21]. This notion
provides a theoretical rationale for the static de-
pendency pair method.

Definition 3.1 (Strong Computability) A
term t is said to be strongly computable in an HRS
R if SC(R, t) holds, which is inductively defined
on simple types as follows:

• in case of type(t) ∈ B, SC(R, t) is defined as
SN(R, t),

• in case of type(t) = α → β, SC(R, t) is defined
as ∀u ∈ Tα.(SC(R, u) ⇒ SC(R, (tu)↓)).

We also define TSC(R) = {t | SC(R, t)},
T¬SC(R) = T \ TSC(R), and T args

SC (R) = {t | ∀u ∈
args(t).SC(R, u)}.

Here we give the basic properties for strong com-
putability, needed later on.

Lemma 3.2 For any HRS R, the following prop-
erties hold:

(1) For any (t0 t1 · · · tn)↓ ∈ T , if SC(R, ti) holds
for all ti, then SC(R, (t0 t1 · · · tn)↓).

(2) For any tα1→···→αn→α, if ¬SC(R, t), then there
exist strongly computable terms uαi

i (1 ≤ i ≤
n) such that ¬SC(R, (t u1 · · · un)↓).

(3) SC(R, s) and s ∗−→
R

t implies SC(R, t), for all
s, t.

(4) The η-long β-normal form z↓ of any variable
zα is strongly computable, for all types α.

(5) SC(R, tα) implies SN(R, tα), for all types α.

Proof. The properties (1) and (2) are easily shown
by induction on n.

(3) We prove the claim by induction on type(t).
The case type(t) ∈ B is trivial. Suppose that
type(s) = type(t) = α → β. Let s ≡ λx.s′,
t ≡ λx.t′, and uα be an arbitrary strongly
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computable term. Since type(l) ∈ B for every
l → r ∈ R, we have s′ ∗−→

R
t′. From Propo-

sition 2.1, we have (su)↓ ≡ s′{x := u} ∗−→
R

t′{x := u} ≡ (tu)↓. Since (su)↓ is strongly
computable, SC(R, (tu)↓) follows from the in-
duction hypothesis. Hence t is strongly com-
putable.

(4,5) We prove claims by simultaneous induction
on α. The case α ∈ B is trivial. Suppose that
α = α1 → · · · → αn → β and β ∈ B.

Induction step of (4): Assume that z↓ is
not strongly computable for some z ∈ Vα.
From (2), there exist strongly computable
terms uα1

1 , . . . , uαn
n and (z(u1, . . . , un))↓ ≡

z(u1, . . . , un) is not strongly computable. From
the induction hypothesis (5), each ui is ter-
minating, hence so is z(u1, . . . , un). Since
z(u1, . . . , un) is of basic types, z(u1, . . . , un) is
strongly computable. This is a contradiction.

Induction step of (5): From the induction hy-
pothesis (4), y↓ is strongly computable for any
y ∈ Vα1 , hence so is (ty)↓. From the induction
hypothesis (5), (ty)↓ is terminating, hence so
is t. ¤

4 Plain Function-Passing

The static dependency pair method defined in
the next section cannot be applied to HRSs in
general. For example, consider the HRS R =
{foo(bar(λx.F (x))) → F (bar(λx.F (x)))}. Since
the defined symbol foo does not occur on the right
hand side, no static recursive structure exists. How-
ever, R is not terminating: foo(bar(λx.foo(x))) −→

R

foo(bar(λx.foo(x))) −→
R

· · ·. The static depen-
dency pair method therefore requires a suitable re-
striction. In [19], we introduced the notions of
‘strongly linear’ and ‘non-nested’ HRSs. However,
these restrictions are too tight. For STRSs we pre-
sented the notion of plain function-passing, which
covers practical level programs [13]. Intuitively,
plain function-passing means that higher-order free
variables on the left-hand side are passed to the
right-hand side directly. In this section, we extend
the notion of plain function-passing to HRSs.

Definition 4.1 Let R be an HRS and l → r ∈ R.
We define the set safe(l) of safe subterms of l as the
following:

args(l)∪
∪

l′∈args(l)

{u ∈ safeB(l′, FV (l)) | FV (l) ⊇ FV (u)},

where safeB(λxm.a(tn), X) is defined as {a(tn)} if
a ∈ X; otherwise {a(tn)} ∪

∪n
i=1 safeB(ti, X).

We note that safe(l) ⊆ Sub(l) and any t ∈
safeB(l′, FV (l)) is of basic types.

Example 4.2 Consider HRS Rfoldl displayed in
the introduction. Suppose that

l ≡ foldl(λxy.F (x, y), Y, cons(X,L)).

For each argument u ∈ args(l), safeB(u, FV (l)) is
the following:

safeB(λxy.F (x, y), FV (l)) = {F (x, y)}
safeB(Y, FV (l)) = {Y }

safeB(cons(X,L), FV (l)) = {cons(X,L), X, L}

Since FV (F (x, y)) 6⊆ FV (l), safe subterms safe(l)
is the following:

safe(l) = args(l) ∪ {Y, cons(X,L), X, L}
= {λxy.F (x, y), Y, cons(X,L), X, L}

We prepare a technical lemma to show the sound-
ness of the static dependency pair method.

Lemma 4.3 Let R be an HRS, l → r ∈ R and
θ be a substitution. Then lθ↓ ∈ T args

SC (R) implies
SC(R, sθ↓) for any s ∈ safe(l).

Proof. The case s ∈ args(l) is trivial because
sθ↓ ∈ args(lθ↓) follows from top(l) ∈ Σ. Sup-
pose that s ∈ safeB(l′, FV (l)) and FV (s) ⊆ FV (l)
for some l′ ∈ args(l). Then we have SN(R, l′θ↓)
from Lemma 3.2(5). Since type(s) ∈ B from the
definition of safeB, it suffices to show SN(R, sθ↓).
We prove by induction on definition of safeB
that s ∈ safeB(t, FV (l)) and SN(R, tθ↓) implies
SN(R, sθ↓), for all t ≡ λx1 · · ·xm.a(t1, . . . , tn) ∈
Sub(l′).

The case t ≡ λx1 · · ·xm.s is trivial because
tθ↓ ≡ λx1 · · ·xm.(sθ↓). Suppose that s ∈
safeB(tj , FV (l)) for some j. Without loss of gen-
erality, we can assume that a /∈ Dom(θ) because
a /∈ FV (l). Then tθ↓ ≡ λxm.a(tnθ↓). Hence,
SN(R, tjθ↓) holds. From the induction hypothesis,
we have SN(R, sθ↓). ¤

Definition 4.4 (Plain Function-Passing) An
HRS R is said to be plain function-passing (PFP)
if for any l → r ∈ R and Z(r1, . . . , rn) ∈ Sub(r)
such that Z ∈ FV (r), there exists k (≤ n) such
that Z(r1, . . . , rk)↓ ∈ safe(l). We often abbreviate
plain function-passing HRS to PFP-HRS.

Example 4.5 Referencing to Example 4.2. Since
F↓ ≡ λxy.F (x, y) ∈ safe(l), HRS Rfoldl is PFP.

4



Example 4.6 Let R be the following non-
terminating HRS:{

foo(bar(λx.F (x))) → F (bar(λx.F (x)))

Then R is not PFP because:

F↓ /∈ {bar(λx.F (x))} = safe(foo(bar(λx.F (x)))).

Example 4.7 Let R be the following terminating
HRS: mapfun(nilF, X) → nil

mapfun(consF(λx.F (x), L), X)
→ cons(F (X), mapfun(L,X))

Then R is not PFP because:

F↓ /∈ {consF(λx.F (x), L), L,X}
= safe(mapfun(consF(λx.F (x), L), X))

In any PFP-HRS R, for any subterm
Z(r1, . . . , rn) headed by a higher-order vari-
able in the right hand side of a rule l → r,
there exists a prefix Z(r1, . . . , rk) such that
Z(r1, . . . , rk)↓ ∈ safe(l). Thanks to Lemmas
3.2(1) and 4.3, this property guarantees that
Z(r1, . . . , rn)θ↓ is strongly computable whenever
lθ↓ ∈ T args

SC (R) and riθ↓ ∈ TSC(R) (i = 1, . . . , n).
This beneficial property eliminates a dependency
analysis through higher-order variables from static
recursive structure analysis (cf. Lemma 5.11), and
contributes in obtaining the soundness of the static
dependency pair method (cf. Theorem 5.12).

In the definition of PFP, the case n = 0 must
be considered. That is, any first-order variable in
V ar(r) should belong to safe(l). Otherwise Lemma
4.3 does not hold. For example, consider the HRS
R = {foo(F (X)) → X} and the substitution θ =
{F := λx.0}. Then X does not occur in foo(0) ≡
foo(F (X))θ↓, and we must exclude R from plain
function-passing.

Note that every first-order rewrite system is plain
function-passing.

A termination condition for higher-order rewrite
rules having a specific form of plain function-passing
was investigated under Jouannaud and Okada’s
general schema [9, 10]. The restriction that higher-
order variables occur as arguments is weakened by
using the notion of computability closure [3, 4, 5].
We leave a similar extension of the present work
with computability closure for the future.

5 Static Dependency Pair
Method

In this section we present the static dependency pair
method for PFP-HRSs. The recursive structures

derived by the static dependency pair method ac-
cord with a programmer’s intuition. Since many
existing programs are written so as to terminate,
this method is of benefit in proving that they do
indeed terminate.

First, we describe candidate terms, improving on
the notion of candidate terms in [18]. Candidate
terms are a variant of subterms, and bound vari-
ables never become free in candidate terms. This
feature is useful for showing the soundness of our
method (cf. Lemma 5.11).

Definition 5.1 (Candidate Term) The set of
candidate terms of t ≡ λxm. a(tn), denoted by
Cand(t), is defined as follows:

Cand(t) = {t} ∪
n∪

i=1

Cand(λx1 · · ·xm.ti)

We consider the case of foo, bar ∈ DR and t ≡
λx.foo(bar, x). Then we have

Cand(t) = {λx.foo(bar, x), λx.bar, λx.x}.

Note that the definition in [18] gave Cand(t) =
{foo(bar, cx), bar}, where cx is a fresh constant
corresponding to the bound variable x.

Next, we introduce the notion of static depen-
dency pairs by using candidate terms. This no-
tion forms the basis for the static dependency pair
method.

Definition 5.2 (Static Dependency Pair)
Let R be an HRS. A pair 〈l], a](r1, . . . , rn)〉,
denoted by l] → a](r1, . . . , rn), is said to be a static
dependency pair in R if there exists l → r ∈ R such
that

• λx1 · · ·xm.a(r1, . . . , rn) ∈ Cand(r),

• a ∈ DR, and

• a(r1, . . . , rk)↓ /∈ safe(l) for all k (≤ n).

We denote by SDP (R) the set of static dependency
pairs in R.

Notice that static dependency pairs have no
terms headed by a higher-order variable nor terms
of a functional type.

Example 5.3 For the HRS Rsqsum displayed in the
introduction, the set SDP (Rsqsum) consists of the
following seven pairs:

foldl](λxy.F (x, y), X, cons(Y,L))
→ foldl](λxy.F (x, y), F (X,Y ), L)

add](s(X), Y ) → add](X,Y )
mul](s(X), Y ) → add](mul(X,Y ), Y )
mul](s(X), Y ) → mul](X,Y )
sqsum](L) → foldl](λxy.add(x, mul(y, y)), 0, L)
sqsum](L) → add](x, mul(y, y))
sqsum](L) → mul](y, y)
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Notice that we use the extra variables x, y in the
sixth and seventh dependency pairs.

Each static dependency pair expresses nothing
but the local dependency of functions based on de-
pendency relationships displayed in rules. To an-
alyze the global dependency of functions, in other
words, to analyze the static recursive structure, we
introduce notions of a static dependency chain and
a static dependency graph.

Definition 5.4 (Static Dependency Chain)
Let R be an HRS. A sequence u]

0 → v]
0, u

]
1 → v]

1, · · ·
of static dependency pairs in R is said to be a
static dependency chain in R if there exist
θ0, θ1, . . . such that v]

iθi↓ ∗−→
R

u]
i+1θi+1↓ and

uiθi↓, viθi↓ ∈ T args
SC (R) for any i.

Definition 5.5 (Static Dependency Graph)
The static dependency graph of R is a directed
graph, in which nodes are SDP (R) and there
exists an arc from u] → v] to u′] → v′] if
u] → v], u′] → v′] is a static dependency chain.

Example 5.6 The static dependency graph of the
HRS Rsqsum (cf. Example 5.3) is shown in Fig. 1.

Unfortunately, the connectability of the static de-
pendency pairs is undecidable. Hence, we need suit-
able approximation techniques. In TRSs, such tech-
niques were studied [16]. One of simple approxi-
mated dependency graphs is the graph in which an
arc from u] → v] to u′] → v′] exists if v] and u′]

have the same top symbol. Note that for the HRS
Rsqsum this approximation gives the precise static
dependency graph shown in Fig. 1.

We now introduce the notions of static recur-
sion components and non-loopingness. As usual,
the termination of HRS can be proved by proving
the non-loopingness of each recursion component.
These proofs are similar to the other dependency
pair methods.

Definition 5.7 (Static Recursion Component)
Let R be an HRS. A static recursion component
in R is a set of nodes in a strongly connected
subgraph of the static dependency graph of R.
Using SRC(R) we denote the set of static recursion
components in R.

Example 5.8 The static dependency graph of
Rsqsum (Fig. 1) has three strongly connected sub-
graphs. Thus, the set SRC(Rsqsum) consists of the
following three components:{

foldl](λxy.F (x, y), X, cons(Y,L))
→ foldl](λxy.F (x, y), F (X,Y ), L){

add](s(X), Y ) → add](X,Y ){
mul](s(X), Y ) → mul](X,Y )

Definition 5.9 (Non-Looping) A static recur-
sion component C in an HRS R is said to be non-
looping if there exists no infinite static dependency
chain in which only pairs in C occur and every
u] → v] ∈ C occurs infinitely many times.

In the remainder of this section, we show the
soundness of the static dependency pair method on
PFP-HRSs. That is, we show that if any static re-
cursion component of PFP-HRS R is non-looping,
then R is terminating. We need two lemmas.

Lemma 5.10 Let R be a non-terminating HRS.
Then TB ∩ T¬SC(R) ∩ T args

SC (R) 6= ∅.

Proof. Since R is not terminating, T¬SC(R) 6=
∅ follows from Lemma 3.2(5). Let t ≡
λx1 · · ·xm.a(t1, . . . , tn) be a minimal size term
in T¬SC(R). From Lemma 3.2(2), there exist
u1, . . . , um ∈ TSC(R) such that ¬SC(R, t′) where
t′ ≡ (t u1 · · · um)↓. Suppose that σ = {xj :=
uj | 1 ≤ j ≤ m}. Then t′ ≡ (aσ t1σ · · · tnσ)↓.
Since the size of t′i ≡ λx1 · · ·xm.ti is less than the
size of t, we have SC(R, t′i) by the minimality of t.
Since tiσ↓ ≡ (t′i u1 · · · um)↓, we have SC(R, tiσ↓)
by Lemma 3.2(1). Assume that a ∈ {x1, . . . , xm}.
Since aσ↓ ≡ uj ∈ TSC(R), SC(R, t′) follows from
Lemma 3.2(1). This is a contradiction. Hence,
we have a /∈ {x1, . . . , xm}. Therefore we have
t′ ≡ a(t1σ↓, . . . , tnσ↓) ∈ TB ∩ T¬SC(R) ∩ T args

SC (R).
¤

Lemma 5.11 Let R be a PFP-HRS. For any t ∈
TB ∩ T¬SC(R) ∩ T args

SC (R), there exist l] → v] ∈
SDP (R) and a substitution θ such that t] ∗−→

R
(lθ↓)]

and lθ↓, vθ↓ ∈ TB ∩ T¬SC(R) ∩ T args
SC (R).

Proof. From t ∈ T args
SC (R) and Lemma 3.2(5), we

have t ∈ T args
SN (R). From t ∈ TB ∩ T¬SC(R), we

have ¬SN(R, t). Hence, there exist l → r ∈ R and
a substitution θ′ such that t] ∗−→

R
(lθ′↓)], lθ′↓, rθ′↓ ∈

T¬SN (R), and Dom(θ′) ⊆ FV (l). Since type(l) =
type(r) ∈ B, we have lθ′↓, rθ′↓ ∈ T¬SC(R). More-
over, lθ′↓ ∈ T args

SC (R) follows from Lemma 3.2(3).
Since r ∈ Cand(r) and ¬SC(R, rθ′↓), we have
{r′ ∈ Cand(r) | ¬SC(R, r′θ′↓)} 6= ∅. Let v′ ≡
λx1 · · ·xm.a(r1, . . . , rn) be a minimal size term in
this set.

From Lemma 3.2(2), there exist strongly
computable terms u1, . . . , um such that
(v′θ′ u1 · · · um)↓ is not strongly com-
putable. Let v and θ be v ≡ a(r1, . . . , rn)
and θ = θ′ ∪ {xi := ui | 1 ≤ i ≤ m}. Since
vθ↓ ≡ (v′θ′ u1 · · · um)↓, we have vθ↓ ∈
TB ∩ T¬SC(R). Since lθ↓ ≡ lθ′↓ from xi /∈ FV (l),
we have lθ↓ ∈ TB ∩ T¬SC(R) ∩ T args

SC (R). Since
λx1 · · ·xm.ri ∈ Cand(r), SC(R, (λx1 · · ·xm.ri)θ′↓)
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mul](s(X), Y ) → mul](X, Y )

6
?

sqsum](L) → mul](y, y)¾

?

sqsum](L) → add](x, mul(y, y))

?
mul](s(X), Y ) → add](mul(X, Y ), Y ) - add](s(X), Y ) → add](X, Y )

6
sqsum](L) → foldl](λxy.add(x, mul(y, y)), 0, L)

?
foldl](λxy.F (x, y), X, cons(Y, L)) → foldl](λxy.F (x, y), F (X, Y ), L)

?

Figure 1: static dependency graph of Rsqsum

follows from the minimality of v′. Hence, each
riθ↓ ≡ ((λx1 · · ·xm.ri)θ′ u1 · · · um)↓ is strongly
computable from Lemma 3.2(1).

We prove the remaining claims that vθ↓ ∈
T args

SC (R) and l] → v] ∈ SDP (R).

• Assume that a ∈ {xi | 1 ≤ i ≤ m}.
Then SC(R, vθ↓) follows from SC(R, aθ↓) and
Lemma 3.2(1). This is a contradiction.

• Assume that a ∈ FV (r). Since R
is PFP, there exists k (≤ n) such that
a(r1, . . . , rk)↓ ∈ safe(l). From Lemma 4.3,
SC(R, a(r1, . . . , rk)θ↓) holds. From Lemma
3.2(1), SC(R, vθ↓) holds. This is a contradic-
tion.

• Assume that a ∈ CR. Then ∀i.SN(R, riθ↓)
follows from Lemma 3.2(5). From a ∈ CR,
we have SN(R, vθ↓). From v ∈ TB, we have
SC(R, vθ↓). This is a contradiction.

• Assume that a ∈ DR and there exists k (≤
n) such that a(r1, . . . , rk)↓ ∈ safe(l). From
Lemma 4.3, SC(R, a(r1, . . . , rk)θ↓) holds.
From Lemma 3.2(1), SC(R, vθ↓) holds. This
is a contradiction.

As shown above, we have a ∈ DR and
a(r1, . . . , rk)↓ /∈ safe(l) for all k (≤ n). Hence l] →
v] ∈ SDP (R). Moreover, vθ↓ ∈ T args

SC (R) holds be-
cause vθ↓ ≡ a(r1θ↓, . . . , rnθ↓) and SC(R, riθ↓) for
any i. ¤

By using the two lemmas above, we can show the
soundness of the static dependency pair method.

Theorem 5.12 Let R be a PFP-HRS. If there ex-
ists no infinite static dependency chain then R is
terminating.

Proof. Assume that ¬SN(R). From Lemma 5.10,
there exists t ∈ TB ∩T¬SC(R) ∩T args

SC (R). By ap-
plying Lemma 5.11 repeatedly, we obtain an infinite
static dependency chain, which leads to a contradic-
tion. ¤

Corollary 5.13 Let R be a PFP-HRS such that
there exists no infinite path2 in the static depen-
dency graph. If all static recursion components are
non-looping, then R is terminating.

Note that no infinite path condition in this corol-
lary is always satisfied for finite PFP-HRSs, since
nodes are finite in the static dependency graph.

6 Non-Loopingness

In section 5 we showed that a PFP-HRS terminates
if every static recursion component is non-looping.
In order to show non-loopingness, the notion of the
subterm criterion [8, 13] is frequently utilized, as is
that of a reduction pair [11], which is an abstraction
of the weak-reduction order3[1]. These techniques
are also effective in termination proofs for HRSs.
We begin with reduction pairs.

Definition 6.1 (Reduction Pair) Let & be a
quasi-order and > be a strict order. The pair (&, >)
is said to be a reduction pair if the following prop-
erties hold:

• > is well-founded and closed under substitu-
tion,

• & is closed under contexts and substitutions,
and

• & · > ⊆ > or > · & ⊆ >.

Lemma 6.2 Let R be an HRS and C ∈ SRC(R).
If there exists a reduction pair (&, >) such that R ⊆
&, C ⊆ &∪>, and C∩> 6= ∅, then C is non-looping.

Proof. Obvious. ¤
2Each node cannot appear more than once in a path.
3A quasi-order & is said to be a weak reduction order if

the pair (&, �) of & and its strict part � is a reduction pair.
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Next we introduce the subterm criterion for
HRSs. In [8], Hirokawa and Middeldorp proved
that the subterm criterion guarantees the non-
loopingness in TRSs. The key of the proof is that
the relation −→

R
∪ >sub is well-founded on terminat-

ing terms. Since the property also holds in higher-
order rewriting, we directly ported the criterion to
STRSs [13]. We also slightly improved the subterm
criterion by extending the codomain of a function π
from positive integers to sequences of positive inte-
gers [13]. In the following, we extend the improved
subterm criterion onto HRSs, that is to handle λ-
abstraction.

Definition 6.3 (Subterm Criterion) Let R be
an HRS and C ∈ SRC(R). We say that C sat-
isfies the subterm criterion if there exists a function
π from DR to non-empty sequences of positive in-
tegers such that

(α) u|π(top(u)) >sub v|π(top(v)) for some u] → v] ∈
C, and

(β) the following conditions hold for any u] → v] ∈
C:

• u|π(top(u)) ≥sub v|π(top(v)),

• ∀p ≺ π(top(u)).top(u|p) /∈ FV (u), and

• ∀q ≺ π(top(v)).q = ε∨top(v|q) /∈ FV (v)∪
DR.

Lemma 6.4 Let R be an HRS and C ∈ SRC(R).
If C satisfies the subterm criterion then C is non-
looping.

Proof. Assume that pairs in C generate an in-
finite chain u]

0 → v]
0, u

]
1 → v]

1, u
]
2 → v]

2, · · · in
which every u] → v] ∈ C occurs infinitely many
times, and let θ0, θ1, . . . be substitutions such that
v]

iθi↓ ∗−→
R

u]
i+1θi+1↓ and uiθi↓, viθi↓ ∈ T args

SC (R)
for each i. From Lemma 3.2(5), uiθi↓, viθi↓ ∈
T args

SN (R). Denote π(top(ui)) by pi for each i. Since
v]

iθi↓ ∗−→
R

u]
i+1θi+1↓, we have top(vi) = top(ui+1).

Hence, from the condition (β) of the subterm crite-
rion, we have

(u0θ0↓)|p0 ≥sub (v0θ0↓)|p1
∗−→
R

(u1θ1↓)|p1 ≥sub · · · .

From the condition (α) of the subterm criterion,
the sequence above contains infinitely many >sub.
Hence there exists an infinite sequence starting with
(u0θ0↓)|j with respect to −→

R
∪ >sub, where j is

the positive integer such that j ¹ p0. This is a
contradiction with u0θ0↓ ∈ T args

SN (R). ¤

Finally, we present a powerful method for proving
termination of PFP-HRSs.

Theorem 6.5 Let R be a PFP-HRS such that
there exists no infinite path in the static depen-
dency graph. If any static recursion component
C ∈ SRC(R) satisfies one of the following prop-
erties, then R is terminating.

• C satisfies the subterm criterion.

• There exists a reduction pair (&, >) such that
R ⊆ &, C ⊆ & ∪ >, and C ∩ > 6= ∅.

Proof. From Corollary 5.13 and Lemma 6.2, 6.4.
¤

As seen in the theorem, proving non-loopingness
by the subterm criterion depends only on a recur-
sion component, unlike proving one by a reduction
pair. Thus the approach by the subterm criterion is
more efficient than the approach by reduction pairs.

Example 6.6 We show the termination of PFP-
HRS Rsqsum displayed in the introduction. Let
π(foldl) = 3, π(add) = 1, and π(mul) = 1. Then
all C ∈ SRC(Rsqsum) (cf. Example 5.8) satisfy the
subterm criterion in the underlined positions below:{

foldl](λxy.F (x, y), X, cons(Y,L))
→ foldl](λxy.F (x, y), F (X,Y ), L){

add](s(X), Y ) → add](X,Y ){
mul](s(X), Y ) → mul](X,Y )

Hence the termination can be shown by Theorem
6.5.

7 Concluding Remarks

In this paper, we extended the static dependency
pair method based on strong computability for
STRSs [13] to that for HRSs. The following top-
ics remain for future work.

• Argument filtering method for HRSs: Since it
is generally difficult to design reduction pairs,
the argument filtering method was proposed
for the dependency pair method of TRSs [1],
and extended to STRSs [12]. However, there is
no known argument filtering method for HRSs.
The argument filtering method in [12] can only
be applied to left-firmness systems, in which
every variable of the left-hand sides occurs at
a leaf position. It may be possible to adapt the
argument filtering method for HRSs without
the left-firmness restriction because the coun-
terexample shown in [12] is no longer a coun-
terexample for HRSs.

• Notion of usable rules for HRSs: The notion
of usable rules was introduced for TRSs by Hi-
rokawa and Middeldorp [8], and by Thiemann,
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Giesl, and Schneider-Kamp [23] to reduce con-
straints when trying to prove non-loopingness
by means of reduction pairs. These proofs are
based on Urbain’s proof of an incremental ap-
proach to the dependency pair method [24]. It
will be of benefit to develop the notion of us-
able rules for HRSs.

• Extending upon the class of plain function-
passing: We have only shown the soundness
of the static dependency pair method for the
class of plain function-passing systems. The
notions of pattern computable closure [4] and
safe function-passing [14] are promising tech-
niques by which this may be extended.

Acknowledgments

This research was partially supported by MEXT
KAKENHI #20500008, #18500011, #20300010,
and by the Kayamori Foundation of Informational
Science Advancement.

References

[1] Arts,T. and Giesl,J., Termination of Term
Rewriting Using Dependency Pairs, Theoret-
ical Computer Science, Vol.236, pp.133–178,
2000.

[2] Blanqui,F., Termination and Confluence of
Higher-Order Rewrite Systems, In Proc. of the
11th Int. Conf. on Rewriting Techniques and
Applications, LNCS 1833 (RTA2000), pp.47–
61, 2000.

[3] Blanqui,F., Jouannaud,J.-P., and Okada,M.,
Inductive-data-type Systems, Theoretical
Computer Science, Vol.272, pp.41–68, 2002.

[4] Blanqui,F., Higher-Order Dependency Pairs,
In Proc. of 8th Int. Workshop on Termination
(WST2006), pp.22–26, 2006.

[5] Blanqui,F., Computability Closure: Ten Years
Later, In Essays Dedicated to Jean-Pierre
Jouannaud on the Occasion of His 60th Birth-
day, LNCS 4600 (Rewriting, Computation and
Proof), pp.68–88, 2007.

[6] Dershowitz,N., Orderings for Term-Rewriting
Systems, Theoretical Computer Science,
Vol.17(3), pp.270–301, 1982.

[7] Girard,J.-Y., Interprétation fonctionnelle et
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