
1

Static Dependency Pair Method in Functional Programs

KUSAKARI Keiichirou

Informatics Course, Faculty of Engineering, Gifu University

SUMMARY We have previously introduced the static de-
pendency pair method that proves termination by analyzing the
static recursive structure of various extensions of term rewrit-
ing systems for handling higher-order functions. The key is to
succeed with the formalization of recursive structures based on
the notion of strong computability, which is introduced for the
termination of typed λ-calculi. To bring the static dependency
pair method close to existing functional programs, we also ex-
tend the method to term rewriting models in which functional
abstractions with patterns are permitted. Since the static de-
pendency pair method is not sound in general, we formulate a
class; namely, accessibility, in which the method works well. The
static dependency pair method is a very natural reasoning; there-
fore, our extension differs only slightly from previous results. On
the other hand, a soundness proof is dramatically difficult.
key words: functional program, term rewriting system, termi-
nation, recursive definition, static dependency pair method

1. Introduction

The static dependency pair method (SDP-method)
[13], [16]–[19], [22] is a powerful method to prove the
termination of various extensions of term rewriting sys-
tems (TRSs) [24] for handling higher-order functions.
The method shows the termination by analyzing a
static recursive structure. The principle of the SDP-
method is such that if any recursion is suitably de-
fined, then it must terminate. To bring the method
close to existing functional programs, we extend the
method to term rewriting models for functional pro-
grams (TRFPs) in which functional abstractions with
patterns are permitted.

We first consider primitive recursion in higher-
order settings:

prec : Nat → α → (Nat → α → α) → α

The function can be represented by the following
TRFP:{

prec 0 z f → z
prec (suc x) z f → f x (prec x z f)

Although it is well-known that the Ackermann function
ack : Nat → Nat → Nat is not primitively recursive in
first-order settings, the following TRFP can represent
the function by using higher-order primitive recursion
twice:{

iter f x → prec x (f (suc 0)) (fn x′ ⇒ fn z ⇒ f z)
ack x → prec x suc (fn x′ ⇒ fn f ⇒ iter f)

In a functional programming way, we implement pro-
grams by defining functions. Hence, the termination of

functional programs means that all defined functions
are totally defined.

The SDP-method first analyzes a static recursive
structure. For example, the method reveals that there
is only one recursion,

prec♯ (suc x) z f → prec♯ x z f

called the static recursion component, in the TRFP
that consists of the above four rules. Then the SDP-
method proves the termination by proving the non-
loopingness of the static recursion components. In this
example, we can prove the non-loopingness because
the function “prec” is appropriately recursively pro-
grammed on data types, that is, on the first argument
in the underlined position below.

prec♯ (suc x) z f → prec♯ x z f

By recapitulating such a termination proof of the
SDP-method, we obtain the following assertion:

The function that is appropriately recur-
sively programmed is totally defined.

Although it may be very natural reasoning, the as-
sertion is not correct in general; therefore, the SDP-
method is not sound in general, either. The meaning
of the assertion is such that:

Any part other than the recursive parts
never destroy the termination.

However, we consider a counterexample to this asser-
tion. For example, Combinatory Logic, which can be
represented as:{

S f g x → f x (g x)
K x y → x

is non-terminating [9], but there exist no recursive
structures because combinators S and K do not oc-
cur on the right-hand sides. On the other hand, typed
Combinatory Logic is terminating [9].

Why is untyped Combinatory Logic non-terminating
while typed Combinatory Logic is terminating? From
a technical viewpoint, we can introduce the notion of
strong computability in typed systems. The notion was
introduced to show the termination of typed λ-calculi
[8], [23]. Because the notion is inductively defined on
types, it is well-defined on typed systems, but not on
untyped systems. We note that a theoretical basis for
our SDP-method is also given by the notion of strong

2

computability.
Therefore, we may assume that the SDP-method

is sound in typed systems. However there exists the
following counterexample:

foo (bar f) → f (bar f)

Although this system is typable under foo, f : α →
β and bar : (α → β) → α, it has the self-loop:
foo (bar foo) → foo (bar foo), and hence, is non-
terminating. On the other hand, the SDP-method
mistakenly reveals that no recursive structure exists,
and hence, is terminating, because the function “foo”
does not occur on the right-hand side. From a tech-
nical viewpoint, the problem arises because strong
computability is not closed under the subterm rela-
tion. More precisely, if a receiving argument (bar t) is
strongly computable in evaluating the function “foo”,
the subterm t of (bar t), might not be strongly com-
putable, and t is passed to the right-hand side. In this
paper, we formalize this condition as accessibility (cf.
Definition 4.3), which guards such passing, and hence,
guarantees strong computability of any term that is
passed to the right-hand side through variables. We
also prove the soundness of the SDP-method in the class
of accessible TRFPs.

We note that our SDP-method can prove the ter-
mination of polymorphic-typed Combinatory Logic us-
ing the following two easily checked reasons:

• S and K do not occur on the right-hand sides.
• Any variable occurs in an argument position on the
left-hand sides.

Although several proofs of the termination of
polymorphic-typed Combinatory Logic are known [9],
we believe that our proof is very elegant, despite per-
mitting functional abstraction with patterns.

As discussed previously, the SDP-method is very
natural reasoning so that our extension in this paper
may differ only slightly [19]. On the other hand, the
soundness proof for the SDP-method is dramatically
difficult. To show soundness, it is necessary to wholly
rebuild the soundness proof in [19] (cf. the last half of
Section 5). From a technical viewpoint, our soundness
proof is an extension of the termination proof of typed
λ-calculi by using the notion of strong computability.
Understandably, a try of such extension is broken. Un-
der the restriction of accessibility, our soundness proof
characterizes the first break points of the try and then
a recursive structure, which generates an infinite reduc-
tion, emerges by bridging these points.

The remainder of this paper is organized as follows.
Section 2 provides term rewriting models for functional
programs (TRFPs) in which functional abstractions
with patterns are permitted. In Section 3, we present
ways for the technical decomposition of terms. In Sec-
tion 4, we discuss the notion of strong computability,
which provides a theoretical basis for the SDP-method.

We also show the class of accessible TRFPs in which
the SDP-method is sound. In Section 5, we show the
SDP-method on TRFPs. In Section 6, we introduce
the notion of the subterm criterion and reduction pairs
that prove the non-loopingness of static recursion com-
ponents. Concluding remarks are presented in Section
7.

2. Term Rewriting Model for Functional Pro-
grams

We introduced term rewriting models for functional
programs (TRFPs) [19], as an extension of term rewrit-
ing systems [24]. In this paper, we extend TRFP to al-
low functional abstraction with pattern. For simplicity,
we use the short notation an for a sequence of either
a1, . . . , an or a1 · · · an.

The set S of product, ML-polymorphic and
algebraic-data types (types for short) is generated from
the set TV of type variables by the type constructors
{→,×} ⊎ TC, in which each symbol c ∈ TC is associ-
ated with a natural number n, denoted by arity(c) = n.
Formally, the set S is defined as the least set satisfying
the following properties:

• If α ∈ TV then α ∈ S.
• If σ1, σ2 ∈ S then (σ1 → σ2) ∈ S.
• If σ1, . . . , σn ∈ S then (σ1 × · · · × σn) ∈ S.
• If σ1, . . . , σn ∈ S and c ∈ TC with arity(c) = n
then c(σ1, . . . , σn) ∈ S.

A functional type or higher-order type is a type of the
form (σ1 → σ2). We denote by Snfun the set of non-
functional types. A product type is a type of the form
(σ1 × · · · × σn) for n ≥ 2. A data type is either a
product type or a type of the form c(σ1, . . . , σn). For
c ∈ TC with arity(c) = 0, we simply denote c() by
c. To minimize the number of parentheses, we assume
that → is right-associative and → has lower precedence
than ×. We shortly denote σ1 → · · · → σn → σ0

by σn → σ0. Under these conventions, any type σ is
uniquely denoted by the form σn → σ0 with σ0 ∈ Snfun ,
which we call the canonical form. A type σ is said to
be closed if no type variable occurs in σ. A type σ is
said to be an instance of a type σ′, denoted by σ′ ⪰ σ,
if there is a type substitution ξ such that σ = ξ(σ′).

Let D, C, and V be a set of defined symbols, con-
structors, and term variables, respectively. A type en-
vironment is a pair (Σ,Γ) of functions Σ : C ∪ D → S
and Γ : V → S. For given type environment (Σ,Γ), we
define the set P(Σ,Γ) of patterns as follows:

• If Γ(x) = σ then xσ ∈ P(Σ,Γ).
• If c ∈ C, Σ(c) ⪰ σn → σ0 and pσ1

1 , . . . , pσn
n ∈

P(Σ,Γ) then (c pσ1
1 · · · pσn

n)σ0 ∈ P(Σ,Γ).
• If pσ1

1 , . . . , pσn
n ∈ P(Σ,Γ)

then (pσ1
1 , . . . , pσn

n)σ1×···×σn ∈ P(Σ,Γ).

For given type environment (Σ,Γ), we define the set

3

T (Σ,Γ) of typed terms (terms for short) as follows:

• If Γ(x) = σ then xσ ∈ T (Σ,Γ).
• If Σ(f) ⪰ σ then fσ ∈ T (Σ,Γ).
• If tσ1

1 , . . . , tσn
n ∈ T (Σ,Γ)

then (tσ1
1 , . . . , tσn

n)σ1×···×σn ∈ T (Σ,Γ).

• If pσ1 , . . . , p
σ
m ∈ P(Σ,Γ) and rσ

′

1 , . . . , rσ
′

m ∈ T (Σ,Γ)

then (fn pσ1 ⇒ rσ
′

1 | · · · | pσm ⇒ rσ
′

m)σ→σ′ ∈
T (Σ,Γ).†

• If tσ1→σ2 , uσ1 ∈ T (Σ,Γ) then (t uσ1)σ2 ∈ T (Σ,Γ).

For t ≡ (tσ1
1 , . . . , tσn

n)σ1×···×σn , we identify t as tσ1
1 in

case of n = 1, and t ≡ ()unit in case of n = 0, where
unit is a special type constructor. The α-equivalence
of terms is denoted by ≡. The set of free variables in
a term t is denoted by FV (t), and the set of bound
variables in a term t is denoted by BV (t). We also de-
fine the notions of term/type substitution and term/type
context in the usual way. For simplicity, we assume that
functional application is left-associative and the body of
a functional abstraction extends as far right as possible.
We may drop type information in a term whenever no
confusion arises. We shortly denote fn p1 ⇒ fn p2 ⇒
· · · ⇒ fn pm ⇒ r by fn pm ⇒ r or fn p ⇒ r, and
u t1 · · · tn by u tn or u t. For convenience, we also in-
troduce the “variable convention”, that is, we assume
that bound variables in a term are all different, and
are disjoint from free variables. Under this convention,
(fn p ⇒ r)θ ≡ fn p ⇒ rθ holds for any term substitu-
tion θ. The set Pos(t) of positions, which are sequences
of natural numbers, in a term t is defined as follows:

• Pos(a tn) = {ε} ∪
∪n

i=1{iq | q ∈ Pos(ti)}
if a ∈ D ∪ C ∪ V

• Pos((t1, . . . , tn)) = {ε} ∪
∪n

i=1{iq | q ∈ Pos(ti)}
• Pos(fn p1 ⇒ r1 | · · · | pm ⇒ rm) = {ε} ∪

∪m
i=1{iq |

q ∈ Pos(fn pi ⇒ ri)} if m > 1
• Pos(fn p ⇒ r) = {ε} ∪ {1q | q ∈ Pos(r)}
• Pos(u tn) = {ε} ∪ {0q0 | q0 ∈ Pos(u) \ {ε}} ∪∪n

i=1{iq | q ∈ Pos(ti)} if n > 0 where u ≡
(fn p1 ⇒ r1 | · · · | pm ⇒ rm)

The prefix order ≺ on positions is defined by p ≺ q iff
pw = q for some w ̸= ε. The position ε is said to be a
root position, and a position q in t is said to be a leaf
position if q ∈ Pos(t) and q1 /∈ Pos(t). A context is said
to be a leaf context if any hole occurs in a leaf position.
The subterm of t at position p is denoted by t|p, and the
symbol at position p in t is denoted by (t)p. For the
sake of convenience, we interpret (t)q = tp whenever
t|q ≡ (t1, . . . , tn), and interpret (t)q = fn whenever t|q
is a functional abstraction. Specially, the root symbol
(t)ε is also denoted by root(t). The size |t| of t is defined
as the cardinality of Pos(t). We denote the (proper)

†In this paper, we only study the termination but not
confluence. Hence, we give no restriction for functional ab-
stractions with pattern. In order to guarantee the conflu-
ence, we need suitable restrictions [12].

subterm relation by ⊵sub (▷sub). We define tσ ∈ Tnfun
iff σ is not a functional type, and t ∈ T cls iff σ is closed
for any vσ ⊴sub t.

As a matter of course, we fix a type environ-
ment Σ for defined symbols and constructors. A triple
(lσ, rσ,Γ) is said to be a rewrite rule, denoted by
lσ → rσ : Γ (lσ → rσ for short) if lσ and rσ are
terms of the same type σ under the type environment
(Σ,Γ), root(l) ∈ D, and FV (l) ⊇ FV (r). A term
rewriting model for functional programs (TRFP) is a
set of rewrite rules. For any rewrite rule lσ → rσ,
we define the set Act(l → r) of actual rewrite rules

as: uσ′ → vσ
′ ∈ Act(lσ → rσ) iff there is a type

substitution ξ such that u ≡ lξ zn, v ≡ rξ zn, and
ξ(σ) = σn → σ′, where each zσi

i is a fresh variable.
We also denote by Act(R) the set

∪
l→r∈R Act(l → r).

The relation −→
R of a TRFP R is defined by s −→

R

t iff s ≡ C[lθ] and t ≡ C[rθ] for some actual rewrite
rule l → r ∈ Act(R), leaf context C[], and term substi-
tution θ. We also define s −→

fn t iff there exists a context
C[] such that s ≡ C[(fn p1 ⇒ r1 | · · · | pm ⇒ rm) piθ]
and t ≡ C[riθ]. The rewrite relation −−→

R,fn is the union of
−→
R and −→

fn . Especially, we denote s −−→
R,fn

ε t if a rewrite
−−→
R,fn occurs at the root position; otherwise we denote
s −−→

R,fn
≻ε t.

Example 2.1 Consider the following TRFP Rlen: foldl f e nil → e
foldl f e (cons (x, xs)) → foldl f (f (e, x)) xs
len xs → foldl (fn (x, y) ⇒ suc x) 0 xs

The function foldl : (α × β → α) → α → list(β) → α
is a typical higher-order function that is widely used in
existing functional programs, where α and β are type
variables, and list is a type constructor. The TRFP
Rlen gives a representation of a function that calculates
the length of lists. We demonstrate the calculation of
len (cons (t, nil)) as follows:

len (cons (t, nil))

−→
R foldl (fn (x, y) ⇒ suc x) 0 (cons (t,nil))

−→
R foldl (fn (x, y) ⇒ suc x)

((fn (x, y) ⇒ suc x) (0, t)) nil

−→
fn foldl (fn (x, y) ⇒ suc x) (suc 0) nil

−→
R suc 0

A term t is said to be terminating if there exists
no infinite rewrite sequence of −−→R,fn starting from t. We
write SN(t) if t is terminating. A TRFP R is said to
be terminating if so is any t.

We naturally assume that there is a closed type
other than the special type unit. Then, since actual
rewrite rules are closed under type substitution, we ob-
tain the following proposition.

4

Proposition 2.2 Let R be a TRFP. For any type sub-
stitution ξ, we have s −−→

R,fn t ⇒ sξ −−→
R,fn tξ. Hence R is

terminating if any closed-typed term is terminating.

3. Term Decomposition

In order to define various notions and to prove vari-
ous properties, we introduce adequate decompositions
for terms. In this section, we present various types of
decomposition for terms.

Since we permit functional abstraction with pat-
terns, we can bundle several terms into one term.
For example, we can bundle terms (fn 0 ⇒ 0) and
(fn suc x ⇒ x) in the term (fn 0 ⇒ 0 | suc x ⇒ x).
To uncouple a bundle such as:

hdec(fn 0 ⇒ 0 | suc x ⇒ x) = {fn 0 ⇒ 0, fn suc x ⇒ x},

we introduce the notion of the head decomposition.

Definition 3.1 We define the function hdec as follows:

hdec((fn p1 ⇒ r1 | · · · | pm ⇒ rm) t)
=

∪m
i=1 hdec((fn pi ⇒ ri) t) if m > 1

hdec((fn p ⇒ r) t) = {(fn p ⇒ r′) t | r′ ∈ hdec(r)}
hdec(t) = {t} otherwise

A term t is said to be a single head binding term if
t ∈ hdec(t′) for some t′.

We also introduce the notion of the head part in
single head binding terms.

Definition 3.2 For single head binding terms, we de-
fine the function hd as follows:

• hd((fn p ⇒ r) t) = fn p ⇒ hd(r)
• hd(t) = t if root(t) ̸= fn

For the proof of the soundness of the dependency
pair method on first-order settings, a term of the form
d(t1, . . . , tn) such that d ∈ D and each argument ti
is terminating plays an important role [1]. To extend
the dependency pair method onto higher-order settings,
that is, to design the static dependency pair method,
we introduce the notion of strong computability, which
is a stronger property than termination and is closed
under functional application: if t and u are strongly
computable, then so is t u. For the soundness proof of
the static dependency pair method without functional
abstraction with a pattern, a term of the form d tn
(≡ d t1 · · · tn) such that d ∈ D and each argument ti is
strongly computable also plays an important role [16]–
[19], [22].

In this paper, we permit functional abstraction
with patterns so that we need to decompose the terms
of the form fn p ⇒ d tn. The most natural way may
be to decompose the terms into fn zn ⇒ fn p ⇒ d zn
and the arguments t1, . . . , tn. Then we have (fn zn ⇒

fn p ⇒ d zn) tn
∗−→
fn fn p ⇒ d tn, and fn p ⇒ d tn is

strongly computable whenever the decomposed terms
are strongly computable. However, such decomposition
has two problems that prevent a soundness proof for
the static dependency pair method. One is that bound
variables in ti by p may become free variables. Another
problem is that the size of fn zn ⇒ fn p ⇒ d zn may be
larger than the size of fn p ⇒ d tn. To avoid such diffi-
culties, we technically interpret fn p ⇒ ti (i = 1, . . . , n)
as arguments of fn p ⇒ d tn. Indeed, fn p ⇒ d tn is
strongly computable whenever fn p ⇒ d and each ar-
gument fn p ⇒ ti are strongly computable (cf. Lemma
5.12 with the empty substitution). We formalize such
arguments as:

args(fn p ⇒ d tn) = {fn p ⇒ ti | i = 1, . . . , n}

Definition 3.3 The function args is defined as follows:

• args(a tn) = {tn}
• args((t1, . . . , tn)) = {tn}
• args((fn p1 ⇒ r1 | · · · | pm ⇒ rm) tn)

= {tn} ∪
∪m

i=1{fn pi ⇒ r′i | r′i ∈ args(ri)}

Finally, we introduce the notion of bind preserving
subterms, which embody hdec, hd and args.

Definition 3.4 We inductively define the set Subbp(t)
of bind preserving subterms as follows:

• Subbp(a tn) = {a tn} ∪
∪n

i=1 Subbp(ti)
• Subbp((t1, . . . , tn)) = {(t1, . . . , tn)}∪

∪n
i=1 Subbp(ti)

• Subbp((fn p1 ⇒ r1 | · · · | pm ⇒ rm) tn)
= {fn pi ⇒ ui | ∃i, ui ∈ Subbp(ri)}
∪
∪n

i=1 Subbp(ti)

For instance, we consider the following term t such
that ai ∈ D ∪ C ∪ V for each i.

t ≡ (fn p1 ⇒ a1 (a2, a3)
| p2 ⇒ (fn p3 ⇒ a4 a5 | p4 ⇒ a6) a7)

(fn p5 ⇒ a8 | p6 ⇒ a9)

Then hdec(t) consists of the following three terms:

t1 ≡ (fn p1 ⇒ a1 (a2, a3)) (fn p5 ⇒ a8 | p6 ⇒ a9)
t2 ≡ (fn p2 ⇒ (fn p3 ⇒ a4 a5) a7)

(fn p5 ⇒ a8 | p6 ⇒ a9)
t3 ≡ (fn p2 ⇒ (fn p4 ⇒ a6) a7)

(fn p5 ⇒ a8 | p6 ⇒ a9)

Each hd(ti) is as follows:

hd(t1) ≡ fn p1 ⇒ a1 (a2, a3)
hd(t2) ≡ fn p2 ⇒ fn p3 ⇒ a4 a5
hd(t3) ≡ fn p2 ⇒ fn p4 ⇒ a6

Then args(t) consists of the following four terms:

t4 ≡ fn p1 ⇒ (a2, a3)
t5 ≡ fn p2 ⇒ fn p3 ⇒ a5
t6 ≡ fn p2 ⇒ a7
t7 ≡ fn p5 ⇒ a8 | p6 ⇒ a9

5

The set of bind preserving subterms Subbp(t) consists
of ten terms: hd(t1), hd(t2), hd(t3), t4, t5, t6, and two
elements of args(t4):

fn p1 ⇒ a2 fn p1 ⇒ a3

and two elements of hdec(t7):

fn p5 ⇒ a8 fn p6 ⇒ a9

4. Strong Computability and Accessibility

The theoretical basis of the SDP-method is given by
the notion of strong computability, and the soundness
of the SDP-method is guaranteed by the notion of ac-
cessibility. In this section, we introduce these key no-
tions [19]. By using these notions, we formulate the
class, namely accessible TRFPs (ATRFPs), in which
the soundness of the SDP-method holds. To increase
reusability, we divide an abstract framework from these
constructions. Note that any proof in the following sec-
tions will not refer to any discussion in the constructing
section (Section 4.2). It will refer only to the abstract
framework (Section 4.1).

4.1 Abstract Framework

Definition 4.1 A predicate P over T cls is said to be
a strong computability predicate if the following proper-
ties hold:

(SC1) For any t ∈ T cls, if P (t) then SN(t).
(SC2) For any tσ1→σ2 , uσ1 ∈ T cls, if P (t) and P (u)

then P (t u).
(SC3) For any tσ1→σ2 ∈ T cls, if ∀uσ1 ∈ T cls[P (u) ⇒

P (t u)] then P (t).
(SC4) For any t, u ∈ T cls, if P (t) and t −−→

R,fn u then
P (u).

(SC5) For any t ∈ T cls
nfun , if ∀u ∈ T cls∩({t′ | t −−→R,fn t′}∪

T).P (u) then P (t), where T = args(t) if root(t) ̸=
fn; otherwise T = ∅.

Throughout the paper, we use notations TSC = {t |
SC(t)}, T¬SC = {t | ¬SC(t)}, and T args

SC = {t | ∀u ∈
args(t), SC(u)} for each strong computability predicate
SC. We also use notations TSN = {t | SN(t)}, T¬SN =
{t | ¬SN(t)}, and T args

SN = {t | ∀u ∈ args(t), SN(u)}.

Definition 4.2 For a strong computability predicate
SC, a function A from T to sets of T is said to be an
accessible function if the following properties hold:

(Acc1) For any t, u ∈ T cls, if u ∈ A(t) and t ∈ T args
SC

then SC(u).
(Acc2) For any t, u ∈ T cls and term substitution θ, if

u ∈ A(t) then uθ ∈ A(tθ).
(Acc3) For any t, u ∈ T and type substitution ξ, if

u ∈ A(t) then uξ ∈ A(tξ).

Definition 4.3 A TRFP R is said to be accessible, if
there exist a strong computability predicate SC and an
accessible function Acc such that

• C is accessible, that is, ti ∈ Acc(c tn) for any i and
c ∈ C, and

• for any rule l → r ∈ R and a rn ◁sub r with
a ∈ FV (r), there exists k (≤ n) such that a rk ∈
Acc(l).

An accessible TRFP is often shortly denoted by
ATRFP.

In the introduction, we explained that the SDP-
method is not sound in general. The accessibility gives
a sufficient condition of the soundness of the SDP-
method. In the following, we show that the non-
terminating TRFP R = {foo (bar f) → f (bar f)}
displayed in the introduction is not accessible.

Assume that the TRFP is accessible with a strong
computability predicate SC and an accessible func-
tion Acc. From the assumption, we have f ∈
Acc(foo (bar f)). Thanks to (Acc3), we suppose that
these terms are in T cls.

In case of SC(bar foo), since foo ∈ Acc(foo (bar foo))
by (Acc2), we have SC(foo) by (Acc1). From (SC2),
we have SC(foo (bar foo)). It is a contradiction with
(SC1).

In case of ¬SC(bar foo), we have ¬SC(foo) by
(SC5). From (SC3), there is u ∈ T cls such that SC(u)
and ¬SC(foo u). From (SC5), (SC1) and (SC4), there
is a reduction sequence foo u

∗−−→
R,fn foo (bar u′) −→

R

u′ (bar u′) such that SC(bar u′) and ¬SC(u′ (bar u′)).
Since u′ ∈ Acc(foo (bar u′)) by (Acc2), SC(u′) follows
from (Acc1). However, ¬SC(u′) follows from (SC2). It
is a contradiction.

4.2 Construction

In order to construct a strongly computable predicate
and an accessible function, we introduced the notion
of peeled subterms [17], which was extended to TRFPs
without functional abstractions [19]. The result can be
used in this paper because we do not change the type
systems. In this section, we slightly improve the result
by paying attention to features of product types. The
benefit by this improvement will be demonstrated using
an example at the end of this section.

Definition 4.4 We define the function pcomp as fol-
lows:

pcomp(σ1 × · · · × σn) =
∪n

i=1 pcomp(σi) if n ≥ 2
pcomp(σ) = {σ} otherwise

Definition 4.5 A set PT of peeling types is a subset
of all data types. We define PT⪰ as follows:

{σ | ∃σ′ ∈ PT, σ′ ⪰ σ} ∪ {σ | σ is a product type}

6

A well-founded quasi order ≳ on types is said to be a
peeling order if the following properties hold:

• If σ′ ≳ σ then ξ(σ′) ≳ ξ(σ) for any closed-typed
substitution ξ

• σ1 × · · · × σn ≳ σi for any closed types σ1, . . . , σn

• σ1 → σ2 � σi (i = 1, 2) for any closed types σ1

and σ2, where � is the strict part of ≳

We define the set Sub
≳
PT (t) of peeled subterms as the

smallest set satisfying the following properties:

• args(t) ⊆ Sub
≳
PT (t),

• if (t1, . . . , tn) ∈ Sub
≳
PT (t) then ∀i, ti ∈ Sub

≳
PT (t),

and
• if u ≡ (a uσn

n)σ ∈ Sub
≳
PT (t), σ ∈ PT⪰, and ∀σ′ ∈

pcomp(σi), σ ≳ σ′ then uσi
i ∈ Sub

≳
PT (t).

Definition 4.6 For a set PT of peeling types and peel-
ing order ≳, we define SC(tσ) as follows:

• In case of tσ ∈ T cls
nfun and σ /∈ PT⪰, SC(t) is defined

as SN(t).
• In case of tσ ∈ T cls

nfun and σ ∈ PT⪰, SC(t) is defined

as SN(t) and SC(u) for any uσ′ ∈ T cls ∩ ({t′ |
t −→R t′} ∪ T) such that σ ≳ σ′, where T = args(t)
if root(t) ̸= fn; otherwise T = ∅.

• In case of tσ1→σ2 ∈ T cls, SC(t) is defined as
SC(t u) for all uσ1 ∈ T cls with SC(u).

The well-definedness of SC can be shown as sim-
ilar to [19]. We note that the value of SC(t) for non-
terminating term t is set to false, and the value of
SC(t) for terminating term tσ is inductively defined
on (σ, t) with respect to the lexicographic combination
of (≳,−−→R,fn ∪▷sub).

Definition 4.7 For a set PT of peeling types and a
peeling order ≳, we define the function Acc as follows:

Acc(t) = Sub
≳
PT (t)∪{u | t▷sub u

σ ∈ T cls
nfun , σ /∈ PT⪰}

Theorem 4.8 The predicate SC given in Definition
4.6 is a strong computability predicate, and the func-
tion Acc given in Definition 4.7 is an accessible function.

Proof. We can prove the claim as similar to Theorem
3.6 and 3.7 in [19]. □

Under SC and Acc introduced in this section, the
TRFP for Ackermann function discussed in Section 1
becomes ATRFP. The TRFP Rlen in Example 2.1 is
also ATRFP.

Example 4.9 Consider the TRFP Rlen in Example
2.1. Since types can be interpreted as first-order terms
(we interpret a product type σ1×· · ·×σn as a first-order
term tpn(σ1, . . . , σn)), we construct the peeling order ≳

by using the recursive path order ≥rpo with the empty
precedence [6]. Then the order ≥rpo becomes a peel-
ing order. We take PT as the set of all data types.
Then the TRFP Rlen becomes accessible. In fact, the
first and third rules trivially satisfy the desired prop-
erty because all variables occur in argument positions.
Suppose that t ≡ foldl f e (cons (x, xs)). Then:

• we have f, e, cons (x, xs) ∈ Sub
≳
PT (t) because of

args(t) ⊆ Sub
≳
PT (t),

• we have (x, xs) ∈ Sub
≳
PT (t) because of

(cons (x, xs)α×list(α))list(α) ∈ Sub
≳
PT (t), pcomp(α×

list(α)) = {α, list(α)}, list(α) ≥rpo α and
list(α) ≥rpo list(α), and

• we have x, xs ∈ Sub
≳
PT (t) because of (x, xs) ∈

Sub
≳
PT (t).

Since PT is the set of all data types, we have {u |
t▷sub u

σ ∈ T cls
nfun , σ /∈ PT⪰} = ∅. Hence we have

Acc(t) = Sub
≳
PT (t) = {f, e, cons (x, xs), (x, xs), x, xs}.

Since FV (foldl f (f (e, x)) xs) = {f, e, x, xs} ⊆ Acc(t),
the second rule

foldl f e (cons (x, xs)) → foldl f (f (e, x)) xs

also satisfies the desired property. Therefore Rlen is
accessible.

In this section, we slightly improve the result
[19] by paying attention to feature of product types,
that is, a subterm tσi

i of a product typed term
(. . . , tσi

i , . . .)···×σi×··· is of syntactical subtypes σi of the
product type · · ·×σi×· · · . In the framework in [19], we
had to design a peeling order that satisfies list(α) ≳ α,
list(α) ≳ list(α), and list(α) ≳ α× list(α). Indeed, the
above example does not require:

list(α) ≳ α× list(α)

Although designing such orders is possible, it is very
cumbersome. This is a benefit by our improvement.

5. Static Dependency Pair Method

The SDP-method was introduced on simply-typed term
rewriting systems (STRSs) by us [16], [17]. Then we
extended the method on higher-order rewrite systems
(HRSs) by Nipkow [20] in which functional abstraction
restricted to β-normal η-long forms is permitted [18],
[22]. Moreover, to bring the method close to the exist-
ing functional programs, we extend the method onto
term rewriting models for functional programs with
product, algebraic data, and ML-polymorphic types
[19]. In this section, we extend the SDP-method on
TRFPs in which functional abstraction with pattern
is permitted. We note that our extension permits the

7

representation for higher-order primitive recursion in
Section 1 although it could not be represented in [19].

Firstly, we introduce the notion of static depen-
dency pairs, which is the most basic notion in the static
dependency pair method. In the following, we assume
that there exist strongly computable predicate SC and
accessible function Acc.

Definition 5.1 For each f ∈ D, we provide a new
function symbol f ♯, called the marked-symbol of f . For
each t ≡ a tn with a ∈ D, we define the marked term t♯

by a♯ tn. We assume that the marking does not change
the type information, that is, t and t♯ have the same
type. For tσ, we may write t♯ : σ instead of t♯σ in order
to avoid any confusion.

A pair ⟨ l♯, a♯ rn ⟩ is said to be an outer static
dependency pair in R if there exists a rule l → a rn ∈ R
satisfying the following conditions:

• a ∈ D
• a rk /∈ Acc(l) for all k (≤ n)

A pair ⟨ l♯, a♯ rn ⟩ is said to be an inner static depen-
dency pair in R if it is not an outer static dependency
pair and there exists a rule l → r ∈ R satisfying the
following conditions:

• fn p ⇒ a rn ∈ Subbp(r)
• a ∈ D
• a rk /∈ Acc(l) for all k (≤ n)

A static dependency pair in R is an outer or inner static
dependency pair. We denote by SDP (R) the set of
static dependency pairs in R. We may denote a static
dependency pair ⟨ l♯, r♯ ⟩ by l♯ → r♯.

Example 5.2 Consider the TRFP Rack displayed in
Section 1.

prec 0 z f → z
prec (suc x) z f → f x (prec x z f)
iter f x → prec x (f (suc 0)) (fn x′ ⇒ fn z ⇒ f z)
ack x → prec x suc (fn x′ ⇒ fn f ⇒ iter f)

Then the set SDP (Rack) of static dependency pairs
consists of the following four pairs:

prec♯ (suc x) z f → prec♯ x z f

iter♯ f x → prec♯ x (f (suc 0)) (fn x′ ⇒ fn z ⇒ f z)

ack♯ x → prec♯ x suc (fn x′ ⇒ fn f ⇒ iter f)

ack♯ x → iter♯ f

We note that the second and third pairs are outer static
dependency pairs, and the first and fourth pairs are
inner static dependency pairs.

Definition 5.3 For any outer static dependency pair
u♯ → v♯, we define the set Act(u♯ → v♯) of actual outer
static dependency pairs as: s♯ → t♯ ∈ Act(u♯ : σ → v♯ :
σ) iff s♯, t♯ ∈ T cls, and there is a type substitution ξ

such that s♯ ≡ u♯ξ zn, t
♯ ≡ v♯ξ zn, where the canonical

form of ξ(σ) is τn → τ and each zτii is a fresh variable.
For any inner static dependency pair u♯ → v♯, we

define the set Act(u♯ → v♯) of actual inner static de-
pendency pairs as: s♯ → t♯ ∈ Act(u♯ : σ′ → v♯ : σ) iff
s♯, t♯ ∈ T cls, and there is a type substitution ξ such that
s♯ ≡ u♯ξ z′n, t

♯ ≡ v♯ξ zm, where the canonical forms of
ξ(σ′) and ξ(σ) are τ ′n → τ ′ and τm → τ , respectively,
and each z′i : τ

′
i and zi : τi are fresh variables.

An actual static dependency pair in R is an ac-
tual outer/inner static dependency pair. We denote by
Act(SDP (R)) the set of actual static dependency pairs
in R.

Definition 5.4 A sequence u♯
1 → v♯1, u

♯
2 → v♯2, . . . of

static dependency pairs in R is said to be a static depen-
dency chain in R if there exist s♯1 → t♯1 ∈ Act(u♯

1 → v♯1),

s♯2 → t♯2 ∈ Act(u♯
2 → v♯2), . . ., and term substitutions

θ1, θ2, . . . such that for any i, t♯iθi
∗−−→

R,fn s♯i+1θi+1, and
siθi, tiθi ∈ T args

SC ∩ T¬SC

We give the fundamental theorem of the SDP-
method. Its proof is mentioned later.

Theorem 5.5 Let R be an ATRFP. If there exists no
infinite static dependency chain then R is terminating.

Each static dependency pair expresses nothing but
the local dependency of functions based on dependency
relationships displayed in rules. To analyze the global
dependency of functions, in other words, to analyze the
static recursive structure, we introduce notions of a
static dependency graph and a static recursion com-
ponent.

Definition 5.6 The static dependency graph in R is a
directed graph, in which nodes are SDP (R) and there
exists an arc from u♯ → v♯ to u′♯ → v′♯ if u♯ → v♯, u′♯ →
v′♯ is a static dependency chain.

A static recursion component in R is a set of nodes
either in a finite strongly connected subgraph, or in an
infinite path that include infinitely many kind of static
dependency pairs.

Using SRC(R) we denote the set of static recursion
components in R.

Example 5.7 The static dependency graph of the
TRFP Rack is shown in Fig. 1. The static dependency
graph in Rack has only the static recursion component:

{prec♯ (suc x) z f → prec♯ x z f}

Similar to other dependency pair methods, the
static dependency pair method proves the termination
by proving the non-loopingness of each static recursion
component.

Definition 5.8 A static recursion component C in a
TRFP R is said to be non-looping if there exists no

8

ack♯ x → prec♯ x suc (fn x′ ⇒ fn f ⇒ iter f)

prec♯ (suc x) z f → prec♯ x z f ack♯ x → iter♯ f

iter♯ f x → prec♯ x (f (suc 0)) (fn x′ ⇒ fn z ⇒ f z)

?

6 6
?

Fig. 1 static dependency graph in Rack

infinite static dependency chain such that only pairs in
C occur, and either C is infinite or every u♯ → v♯ ∈ C
occurs infinitely many times.

As a corollary of Theorem 5.5, we obtain the fol-
lowing:

Corollary 5.9 Let R be an ATRFP. If any static re-
cursion components in R is non-looping then R is ter-
minating.

We will discuss in the next section how to show
the non-loopingness.

At the front in Section 1, we stated that the prin-
ciple of the SDP-method is that if any recursion is suit-
ably defined, then it is terminating. This corollary is a
formulation of this principle.

We also obtain the following corollary of Theorem
5.5 by considering the case of R = ∅.

Corollary 5.10 If C is accessible then λ-calculi with
pattern is terminating.

Here λ-calculi with pattern denotes the rewrite
relation −→

fn . We note that it may not be terminat-
ing in case that C is not accessible. In fact, the rule
foo (bar f) → f (bar f) discussed in Section 1 is not
terminating. By using functional abstraction with pat-
tern, this function “foo” can be represented as the term
“fn bar f ⇒ f (bar f)”. They indicate that the empty
TRFP ∅ may be non-terminating, and so is λ-calculi
with pattern. Note that the SDP-method cannot ap-
ply to this example, since the constructor “bar” is not
accessible.

Soundness Proof

In the remainder of this section, we show the soundness
of the SDP-method on ATRFPs, that is, we give a proof
of Theorem 5.5. With the introduction of functional ab-
straction with pattern, it is necessary to wholly rebuild
the soundness proof in [19]. For strong computability
and accessibility, it will refer only to the abstract frame-
work (Definition 4.1 and 4.2). Through the section, we
assume that any TRFP is accessible and any term is of
closed types.

Firstly we present basic properties of strong com-
putability. Here, we define hargs(t) = {rm} and

targs(t) = {un} if t ≡ (fn p1 ⇒ r1 | · · · | pm ⇒ rm) un;
otherwise hargs(t) = ∅ and targs(t) = args(t).

Lemma 5.11

(1) If t ∈ T¬SC , targs(t) ⊆ TSC and hargs(t) ⊆
TSN then there exist u ∈ TSC and v such that
t u

∗−−→
R,fn

≻ε−−→
R,fn

ε v ∈ Tnfun ∩ T¬SC .
(2) If t ∈ TSC then (t) ∈ TSC and a t ∈ TSC for any

a ∈ C ∪ V.
(3) For any pattern p, if pθ ∈ TSC then xθ ∈ TSC for

all x ∈ FV (p).
(4) If fn p ⇒ r ∈ TSC then r ∈ TSC .
(5) If r ∈ TSC and FV (p) ∩ FV (r) = ∅ then fn p ⇒

r ∈ TSC

(6) fn pm ⇒ x ∈ TSC for any x ∈ V.

Proof.

(1) From (SC3), there exists u ∈ TSC such that
t u ∈ Tnfun ∩T¬SC . Then the existence of a desired
sequence follows from (SC4), (SC1) and (SC5).

(2) Assume that a t ∈ T¬SC for some a ∈ C ∪V. From
t ∈ TSC and (1), there exist a sequence a t u

∗−−→
R,fn

≻ε

a t′ u′ −−→
R,fn

ε v. Since ∀l → r ∈ R, root(l) ∈ D, we
have a ∈ D. It is a contradiction. As similar, we
can also prove (t) ∈ TSC .

(3) It is easily proved by induction on pattern p with
the accessibility of C.

(6’) The assumption x /∈ TSC derives a contradiction
with (1). Hence the claim (6) holds for m = 0.

(4) Since (fn p ⇒ r) p −→
fn r, thanks to (SC2) and

(SC4), it suffices to show that any pattern p is
strongly computable, which is easily proved by in-
duction on p by using (6’) and (2).

(5) Assume that fn p ⇒ r /∈ TSC . From (SC1), (1) and
FV (p) ∩ FV (r) = ∅, there exist u, v ∈ TSC such
that (fn p ⇒ r) u v

∗−−→
R,fn (fn p ⇒ r′) pθ v′ −→fn r′ v′ /∈

TSC . Then we have r v
∗−−→

R,fn r′ v′. From (SC4),
we have r v /∈ TSC . On the other hand, r v ∈ TSC

follows from (SC2). This is a contradiction.
(6) We proceed by induction on m. The case m = 0

has already shown in (6’). Suppose that (fn pm ⇒
x) ≡ (fn p ⇒ fn q ⇒ x).
Assume that fn p ⇒ fn q ⇒ x ∈ T¬SC . From
fn q ⇒ x ∈ TSN and (1), there exist u ∈ TSC such

9

that (fn p ⇒ fn q ⇒ x) u
∗−−→

R,fn (fn p ⇒ fn q ⇒
x) pθ w −→

fn (fn q ⇒ xθ) w /∈ TSC . In case of
xθ ≡ x, we have fn q ⇒ xθ ≡ fn q ⇒ x ∈ TSC

from the induction hypothesis. In case of xθ ̸≡ x,
we have xθ ∈ TSC by (SC4) and (3), and hence
fn q ⇒ xθ ∈ TSC from the variable convention and
(5). In both cases, (fn q ⇒ xθ) w ∈ TSC follows
from (SC4) and (SC2). This is a contradiction. □

For the soundness of the SDP-method, we require
the accessibility of C. The property of Lemma 5.11 (3)
is the essence of such a requirement.

Next, we show the property that fn p ⇒ t un is
strongly computable whenever fn p ⇒ t and each fn p ⇒
ui are strongly computable (cf. Lemma 5.12 with the
empty substitution). We define a single head binding
context as a context generated by the grammar: H ::=
□ | (fn p ⇒ H) t.

Lemma 5.12 For any strongly computable substitu-
tion θ, (i.e. ∀x ∈ V. xθ ∈ TSC) such that (fn pm ⇒
tαn→β)θ ∈ TSC , and (fn pm ⇒ uαi

i)θ ∈ TSC (i =
1, . . . , n), we have (fn pm ⇒ t un)θ ∈ TSC .

Proof. We proceed by induction on m. The case m =
0 follows from (SC2). In case ofm > 0, we suppose that
(fn pm ⇒ t un)θ ≡ (fn p ⇒ fn q ⇒ t un)θ ≡ (fn p ⇒
fn q ⇒ tθ unθ). Assume that (fn p ⇒ fn q ⇒ tθ unθ) is
not strongly computable.

From Lemma 5.11 (4), fn q ⇒ tθ and each fn q ⇒
uiθ are strongly computable. From the induction hy-
pothesis, fn q ⇒ tθ unθ is strongly computable. From
(SC1) and Lemma 5.11 (1), there exist v, w ∈ TSC

such that (fn p ⇒ fn q ⇒ tθ unθ) v w
∗−−→

R,fn (fn p ⇒
t′) pθp w′ −→

fn t′θp w′ ∈ T¬SC . From (SC4) and
Lemma 5.11 (3), θp is strongly computable. Thanks to
the variable convention, we can define the substitution
θ′ = θ∪θp, which is strongly computable. Then we have

(fn q ⇒ tθ unθ)θp w
∗−−→

R,fn t′θp w′. From (SC4), we have

(fn q ⇒ tθ unθ)θp w ≡ (fn q ⇒ tθ′ unθ′) w ∈ T¬SC .

From (SC2), we have fn q ⇒ tθ′ unθ′ ∈ T¬SC .
Since (fn p ⇒ fn q ⇒ tθ) and v are strongly com-

putable, strong computability of (fn p ⇒ fn q ⇒ tθ) v
follows from (SC2), and hence strong computability of
fn q ⇒ tθ′ follows from (SC4). As similarity, each
fn q ⇒ uiθ

′ is strongly computable. Hence we have
fn q ⇒ tθ′ unθ′ ∈ TSC from the induction hypothesis.
It is a contradiction. □

We have shown the basic properties for strong com-
putability. We now prove the soundness of the static
dependency pair method. First we will characterize
minimal counterexamples for termination (cf. Lemma
5.18).

Lemma 5.13 If t′θ ∈ TSC for any t′ ∈ hdec(t) then
tθ ∈ TSC .

Proof. We proceed by induction on |t|. Since the case
t ∈ hdec(t) is trivial, it suffices to show the case that t
has the form of H ′[(fn p1 ⇒ r1 | · · · | pm ⇒ rm) u] with
m > 1, where H ′[] is a single head binding context.
Suppose that H[] ≡ H ′[]θ.

Assume that tθ /∈ TSC . From (SC3), there ex-
ist v ∈ TSC such that tθ v ∈ Tnfun ∩ T¬SC . Since
hdec(t) =

∪m
i=1 hdec(H

′[(fn pi ⇒ ri) u]), we have

∀i,H[(fn pi ⇒ riθ) uθ] ∈ TSC from the induction hy-
pothesis. From (SC2) and (SC1), each H[(fn pi ⇒
riθ) uθ] v is terminating. Hence it is obvious that
tθ v ≡ H[(fn p1 ⇒ r1θ | · · · | pm ⇒ rmθ) uθ] v is
also terminating. From (SC4) and (SC5), there exists
a sequence tθ v

∗−−→
R,fn w /∈ TSC with root(w) ̸= fn. Since

H[] is a single head binding context, there exists i such
that H[(fn pi ⇒ riθ) uθ] v

∗−−→
R,fn w /∈ TSC . It is a

contradiction with (SC4). □

Lemma 5.14 Let fn pm ⇒ ti ∈ TSC (i = 1, . . . , n).
Then fn pm ⇒ (t1, . . . , tn) ∈ TSC and fn pm ⇒ a tn ∈
TSC for any a ∈ C ∪ V.

Proof. First we show that fn pm ⇒ (tn) ∈ TSC by
induction on m. The case of m = 0 follows from
Lemma 5.11 (2). Suppose that fn pm ⇒ (tn) ≡
fn p ⇒ fn q ⇒ (tn). From the induction hypoth-
esis, we have fn q ⇒ (tn) ∈ TSC . Assume that
fn p ⇒ fn q ⇒ (tn) ∈ T¬SC . Then, from (SC1) and
Lemma 5.11 (1), there exist u,w ∈ TSC such that
(fn p ⇒ fn q ⇒ (tn)) u w

∗−−→
R,fn (fn p ⇒ fn q ⇒

(t′n)) pθ w′ −→
fn (fn q ⇒ (t′nθ)) w′ ∈ T¬SC . From

(SC4) and (SC2), we have fn q ⇒ (t′nθ) ∈ T¬SC .
Since (fn p ⇒ fn q ⇒ ti) u

∗−−→
R,fn fn q ⇒ t′iθ, it fol-

lows from (SC2) and (SC4) that fn q ⇒ t′iθ ∈ TSC for
each i. Hence, from the induction hypothesis, we have
fn q ⇒ (t′nθ) ∈ TSC . It is a contradiction.

Next we show that fn pm ⇒ a tn ∈ TSC . The case
a ∈ C can be proved as similar to the above case. In
case a ∈ V, we have fn pm ⇒ a tn ∈ TSC from Lemma
5.11 (6) and Lemma 5.12 with the empty substitution.

□
Lemma 5.15 Let t be a single head binding term. If
hd(t)θ ∈ TSC and t′θ ⊆ TSC for any t′ ∈ args(t) then
tθ ∈ TSC .

Proof. We proceed by induction on |t|.
In case that t has the form of fn p ⇒ t′ with

root(t′) ̸= fn, the desired property follows from t ≡
hd(t).

In case that t has the form of s un with n > 0.
Since hd(s) ≡ hd(t) and args(s) ⊆ args(t), we have
sθ ∈ TSC from the induction hypothesis. Hence tθ ≡
sθ unθ ∈ TSC follows from (SC2).

In the remaining case, t has the form of fn p ⇒
(fn q ⇒ r) un with n > 0. Then we have hd(t) ≡
hd(fn p ⇒ fn q ⇒ r) and args(t) = args(fn p ⇒ fn q ⇒

10

r) ∪ {fn p ⇒ ui | i = 1, . . . , n}. From the induction
hypothesis, we have fn p ⇒ fn q ⇒ r ∈ TSC . Hence, by
considering Lemma 5.12 with the empty substitution,
we obtain fn p ⇒ (fn q ⇒ r) un ∈ TSC . □

Lemma 5.16 Suppose that for any fn p ⇒ a un ∈
Subbp(t) with a ∈ FV (t), there exists k ≤ n such that
fn p ⇒ (a uk)θ ∈ TSC . If tθ ∈ T¬SC then there exist
fn p ⇒ d vm ∈ Subbp(t) such that d ∈ D, fn p ⇒ viθ ∈
TSC for any i, and fn p ⇒ d vkθ ∈ T¬SC for any k ≤ m.

Proof. We proceed by induction on |t|.
In case of |hdec(t)| > 1, we have |s| < |t| for any

s ∈ hdec(t). From Lemma 5.13, there exists s ∈ hdec(t)
such that sθ ∈ T¬SC . Hence the desired property fol-
lows from the induction hypothesis.

Suppose that hdec(t) = {t}. From Lemma 5.15,
there exists u ∈ {hd(t)} ∪ args(t) such that uθ ∈ T¬SC .
In case of u ∈ args(t), the desired property follows from
the induction hypothesis because of |u| < |t|. In case
of u ≡ hd(t) and |hd(t)| < |t|, the desired property fol-
lows from the induction hypothesis as similar. Hence it
suffices to show the case hd(t) ≡ t under the assump-
tion tθ ∈ T args

SC . Thanks to Lemma 5.14 and tθ ∈ T args
SC ,

we can denote t ≡ fn p ⇒ a vm with aθ ∈ D. Then
a ∈ D ∪ FV (t) and each fn p ⇒ viθ is strongly com-
putable.

Assume that there exists k ≤ n such that fn p ⇒
(a vk)θ ∈ TSC . From Lemma 5.12, we have tθ ∈ TSC .
It is a contradiction. Moreover a ∈ D follows from the
assumption for free variables. □

Lemma 5.17 If fn pm ⇒ d v ∈ T args
SC ∩T¬SC with d ∈ D

then there exist w ∈ TSC and a strongly computable
substitution θ such that d vθ w ∈ Tnfun ∩T args

SC ∩T¬SC .

Proof. We proceed by induction on m. The case
m = 0 directly follows from (SC3) with the empty sub-
stitution. Suppose that (fn pm ⇒ d v) ≡ (fn p ⇒ fn q ⇒
d v).

In case of fn q ⇒ d v ∈ T¬SC , the desired property
follows from the induction hypothesis, because fn q ⇒
d v ∈ T args

SC follows from Lemma 5.11 (4).
Suppose that fn q ⇒ d v ∈ TSC . From (SC1)

and Lemma 5.11 (1), there exist u,w ∈ TSC such that
(fn p ⇒ fn q ⇒ d v) u w

∗−−→
R,fn (fn p ⇒ v′) pθ′ w′ −→

fn

v′θ′ w′ ∈ T¬SC . Then (fn q ⇒ d vθ′) w
∗−−→

R,fn v′θ′ w′.

From (SC4) and (SC2), we have fn q ⇒ d vθ′ ∈ T¬SC .
From fn p ⇒ q ⇒ d v ∈ T args

SC , we have fn p ⇒ q ⇒ vi ∈
TSC for each i. From (SC2) and (SC4), we have (fn p ⇒
q ⇒ vi) u

∗−−→
R,fn fn q ⇒ viθ

′ ∈ TSC . Hence fn q ⇒ d vθ′ ∈
T args
SC ∩T¬SC . From the induction hypothesis, there exist

a strongly computable substitution θ′′ and w′′ ∈ TSC

such that d vθ′θ′′ w′′ ∈ Tnfun ∩ T args
SC ∩ T¬SC . Here,

strong computability of θ′ follows from Lemma 5.11
(3). Thanks to the variable convention, the substitution
θ = θ′ ∪ θ′′ satisfies the desired property. □

Lemma 5.18 If ATRFP R is not terminating then
{d t ∈ T cls

nfun ∩ T args
SC ∩ T¬SC | d ∈ D} ̸= ∅.

Proof. From Proposition 2.2, we have T cls∩T¬SN ̸= ∅.
From (SC1), we have T cls ∩ T¬SC ̸= ∅. Let t be a
minimal size term in T cls ∩ T¬SC .

From Lemma 5.11 (6) and the minimality, the term
t with the empty substitution satisfy the condition of
Lemma 5.16. Hence there exist d ∈ D and fn p ⇒ d v ∈
Subbp(t) such that fn p ⇒ d v ∈ T args

SC ∩T¬SC . Therefore
the desired property follows from Lemma 5.17. □

This lemma characterizes minimal counterexam-
ples for termination. Next, we bridge such coun-
terexamples. Then an infinite static dependency chain
emerges.

Lemma 5.19 Let R be an ATRFP. For any d ∈ D
and d t ∈ T cls

nfun ∩ T args
SC ∩ T¬SC , there exist u♯ →

v♯ ∈ Act(SDP (R)) and term substitution θ such that
d♯ t

∗−−→
R,fn u♯θ and uθ, vθ ∈ T cls

nfun ∩ T args
SC ∩ T¬SC .

Proof. From (SC1) and Lemma 5.11 (1), there exists
a sequence: d t

≻ε−−→
R,fn

∗ d t′
ε−→
R t′′ ∈ T¬SC . Hence there

exist l → r ∈ Act(R) and θ′ such that d t′ ≡ lθ′ and
t′′ ≡ rθ′. From (SC4), we have lθ′ ∈ T args

SC . Since R is
accessible, it follows from the axiom of accessible func-
tion, the variable convention and Lemma 5.11 (5) that
r and θ′ satisfy the condition of Lemma 5.16. Hence
there exist g ∈ D and fn p ⇒ g vm ∈ Subbp(r) such that

fn p ⇒ viθ
′ ∈ TSC for any i, and fn p ⇒ g vkθ′ ∈ T¬SC

for any k ≤ m. From Lemma 5.17, there exist θ′′ and
wn ∈ TSC such that g vmθ′θ′′ wn ∈ Tnfun∩T args

SC ∩T¬SC .
We define θ as θ(zi) = wi for fresh variables zn; oth-
erwise θ(x) = θ′′(θ′(x)). From Lemma 5.11 (4), we
have viθ ≡ viθ

′ ∈ TSC for any i. Then we have l♯ →
g♯ vm zn ∈ Act(SDP (R)) and (g vm zn)θ ∈ T cls

nfun ∩
T args
SC ∩T¬SC . Since lθ ≡ lθ′ ∈ T cls

nfun ∩T args
SC ∩T¬SC , the

desired property holds. □

All preparations are complete so that we can now
show the fundamental theorem of the static dependency
pair method.

Proof of Theorem 5.5. Assume that R is not ter-
minating. From Lemma 5.18, there exists t ∈ T cls

nfun ∩
T args
SC ∩ T¬SC . By applying Lemma 5.19 repeatedly, we

obtain an infinite static dependency chain. This is a
contradiction. □

6. Proving Non-Loopingness

When proving termination by dependency pair meth-
ods, not only our static dependency pair methods, non-

11

loopingness† should be shown for each recursion compo-
nent (cf. Corollary 5.9). To prove the non-loopingness,
the notions of subterm criterion and reduction pair
have been proposed. The subterm criterion was intro-
duced on TRSs [10], and slightly improved by extend-
ing the subterms permitted by the criterion on simply-
typed TRSs (STRSs) [16], and extended on higher-
order rewrite systems (HRSs) [18]. Reduction pairs [15]
are an abstraction of the notion of the weak-reduction
orders [1]. In [19], we extended both notions to TRFPs
without functional abstraction. This result also works
well on TRFPs. In this section, we introduce these no-
tions.

Intuitively, a static recursion component whose
non-loopingness is proved by the subterm criterion
guarantees that the function is explicitly recursively
programmed on data types, while a component whose
non-loopingness is proved by a reduction pair guaran-
tees that the function is appropriately recursively pro-
grammed by using a decreasing function.

Definition 6.1 A pair (≳, >) of relations on terms is
a reduction pair if ≳ and > satisfy the following prop-
erties:

• > is closed under term substitutions,
• ≳ is closed under contexts, type substitutions and
term substitutions, and

• ≳ ·> ·≳ is well-founded.

Definition 6.2 A set C of static dependency pairs sat-
isfies the subterm criterion if there exists a function π
fromD to non-empty sequences of positive integers such
that:

(i) u|π(root(u)) ▷sub v|π(root(v)) for some u♯ → v♯ ∈ C,
and

(ii) the following conditions hold for any u♯ → v♯ ∈ C:

• u|π(root(u)) ⊵sub v|π(root(v)),
• (u)p /∈ V ∪ {fn} for all p ≺ π(root(u)), and
• q ̸= ε ⇒ (v)q ∈ C ∪{tp} for all q ≺ π(root(v)).

Theorem 6.3 Let R be a finite ATRFP. Then, C ∈
SRC(R) is non-looping if C satisfies one of the follow-
ing properties:

• There is a reduction pair (≳, >) such that R ⊆ ≳,
Act(C) ⊆ ≳ ∪ >, and Act(u♯ → v♯) ⊆ > for some
u♯ → v♯ ∈ C.

• C satisfies the subterm criterion.

Proof. Based on Theorem 5.5, we can prove the claim
as similar to Theorem 5.3 in [19].

Example 6.4 As finale of the running example, we

†In the research area of term rewriting systems, there is
a different use for the term “non-loopingness”: there is no
reduction sequence such as t

+−→ C[tθ].

will prove the termination of ATRFP Rack. We take
π(prec) = 1. Then the only static recursion compo-
nent satisfies the subterm criterion in the underlined
position below.

{prec♯ (suc x) z f → prec♯ x z f}

Hence from Theorem 6.3, the static recursion compo-
nent is non-looping. Therefore the termination of Rack

follows from Corollary 5.9.

Example 6.5 We will prove the termination of
ATRFP Rlen given in Example 2.1. Then the static
dependency pairs SDP (Rlen) consist of the following
two pairs:{

foldl♯ f e (cons (x, xs)) → foldl♯ f (f (e, x)) xs

len♯ xs → foldl♯ (fn (x, y) ⇒ suc x) 0 xs

We take π(foldl) = 3. Then the only static recursion
component satisfies the subterm criterion in the under-
lined position below.

{foldl♯ f e (cons (x, xs)) → foldl♯ f (f (e, x)) xs}

Hence from Theorem 6.3, the static recursion compo-
nent is non-looping. Therefore the termination of Rlen

follows from Corollary 5.9.

Example 6.6 We will prove the termination of TRFP
R, which represents a typical higher-order function
“filter” and its application.

filter p nil → nil
filter p (cons (x, xs)) →
if p x then cons (x,filter p xs) else filter p xs

plist xs → filter (fn 0 ⇒ false | suc x ⇒ true) xs

Here, the expression

if e1 then e2 else e3

is a syntax sugar for the following term:

(fn true ⇒ e2 | false ⇒ e3) e1

Similar to Example 4.9, we can show that TRFP R is
accessible. Then the static dependency pairs consist of
the following two pairs:{

filter♯ p (cons (x, xs)) → filter♯ p xs

plist♯ xs → filter♯ (fn 0 ⇒ false | suc x ⇒ true) xs

We take π(filter) = 2. Then the only static recursion
component satisfies the subterm criterion in the under-
lined position below.

{filter♯ p (cons (x, xs)) → filter♯ p xs}

Hence from Theorem 6.3, the static recursion compo-
nent is non-looping. Therefore the termination follows

12

from Corollary 5.9.

In Section 1, we said that the polymorphic-typed
Combinatory Logic, in which functional abstraction
with pattern is permitted, is an example that shows
the strong efficacy of the SDP-method. Finally together
with other well-known combinators [2], we give an ele-
gant termination proof by the SDP-method.

Example 6.7 Let R be the following TRFP:

(S fα→β→γ gα→β xα)γ → f x (g x)
(K xα yβ)α → x

(I xα)α → x
(B xα→β yγ→α zγ)β → x (y z)
(B′ xα→β yβ→γ zα)γ → y (x z)
(C xα→β→γ yβ zα)γ → x z y

(J xα→β→β yα zβ wα)β → x y (x w z)
(W xα→α→β yα)β → x y y

Since any variable occurs in an argument position on
the left-hand sides, TRFP R is trivially accessible.
Since SDP (R) = ∅ and hence SRC(R) = ∅, the termi-
nation of R follows from Corollary 5.9.

7. Concluding Remarks

In this paper, we have extended the SDP-method onto
TRFPs, in which functional abstraction with pattern
is permitted. Since the syntax of TRFP is very close
to SML-like functional programs, from our result we
expect the effective applicability to verification for ex-
isting functional programs.

On the other hand, in order that the SDP-method
gives full play to its ability, it is indispensable to design
reduction orders, the argument filtering method, and
the notion of usable rules.

An effective and practicable reduction order,
namely higher-order recursive path orderings, was in-
troduced [4], [5], [11]. Since these orderings do not han-
dle functional abstraction with pattern, we will extend
these orderings to TRFPs in the future.

The argument filtering method generates reduction
pairs from reduction orders. The method was intro-
duced for TRSs [1], and extended to STRSs [14], [17],
and to HRSs [22]. Since these results do not handle
functional abstraction with pattern and polymorphic
type systems, we will extend the method to TRFPs in
the future.

The notion of usable rules optimizes the con-
straints generated by the dependency pair methods.
This analysis was first conducted for TRSs [7], [10], and
has been extended to STRSs [17], [21], and to HRSs
[22]. Since these results do not handle functional ab-
straction with pattern and polymorphic type systems,
we will extend the notion to TRFPs in the future.

Acknowledgments

We would like to thank the anonymous referees for their
helpful comments.

References

[1] Arts,T. and Giesl,J.: Termination of Term Rewriting Using
Dependency Pairs, Theoretical Computer Science, Vol.236,
pp.133–178 (2000).

[2] Bimbó,K.: Combinatory Logic: Pure, Applied and Typed,
Chapman and Hall/CRC (2011).

[3] Blanqui,F., Jouannaud,J.-P., and Okada,M.: Inductive-
Data-Type Systems, Theoretical Computer Science, Vol.272,
pp.41–68 (2002).

[4] Blanqui,F.: Computability Closure: Ten Years Later, In
Essay in Honour of Jean-Pierre Jouannaud’s 60 Birthday,
LNCS 4600, pp. 68–88 (2007).

[5] Blanqui,F., Jouannaud,J.-P., and Rubio,A.: The Com-
putability Path Ordering: The End of a Quest, In Proc.
of the 17th EACSL Annual Conf. on Computer Science
Logic, LNCS 5213 (CSL2008), pp.1–14 (2008).

[6] Dershowitz,N.: Orderings for Term-Rewriting Systems.
Theoretical Computer Science, vol.17(3), pp.279–301
(1982).

[7] Giesl,J. Thiemann,R. Schneider-Kamp,P. and Falke,S.:
Mechanizing and Improving Dependency Pairs, Journal of
Automated Reasoning, Vol.37(3), pp.155–203 (2006).

[8] Girard,J.-Y.: Interprétation fonctionnelle et élimination
des coupures de l’arithmétique d’ordre supérieur, PhD the-
sis, University of Paris VII (1972).

[9] Hindley,J.R., Seldin,J.P.: Introduction to Combinators and
λ-Calculus. Cambridge Univ. Press (1986).

[10] Hirokawa, N. and Middeldorp,A.: Tyrolean Termination
Tool: Techniques and Features, In Information and Com-
putation 205(4), pp.474–511 (2007).

[11] Jouannaud,J.-P., and Rubio,A.: Polymorphic Higher-Order
Recursive Path Orderings, JACM 54(1):1–48 (2007).

[12] Klop,J.W., Oostrom,V.van, Vrijer,Roel.de: Lambda Calcu-
lus with Patterns Theoretical Computer Science, Vol. 398,
pp.16–31 (2008).

[13] Kop, C.: Higher Order Termination, Ph.D. thesis, Vrije
Universiteit Amsterdam, 2012.

[14] Kusakari,K.: On Proving Termination of Term Rewriting
Systems with Higher-Order Variables, IPSJ Transactions
on Programming, Vol.42, No.SIG 7 (PRO 11), pp.35–45
(2001).

[15] Kusakari,K., Nakamura,M. and Toyama,Y.: Elimination
Transformations for Associative-Commutative Rewriting
Systems, Journal of Automated Reasoning, Vol.37, No.3,
pp.205–229 (2006).

[16] Kusakari,K. and Sakai,M.: Enhancing Dependency Pair
Method using Strong Computability in Simply-Typed Term
Rewriting Systems, Applicable Algebra in Engineering,
Communication and Computing, Vol.18, No.5, pp.407–431
(2007).

[17] Kusakari,K. and Sakai,M.: Static Dependency Pair Method
for Simply-Typed Term Rewriting and Related Techniques,
IEICE Transactions on Information and Systems, Vol.E92-
D, No.2, pp.235–247 (2009).

[18] Kusakari,K., Isogai,Y., Sakai,M., and Blanqui,F.: Static
Dependency Pair Method based on Strong Computability
for Higher-Order Rewrite Systems, IEICE Transactions on
Information and Systems, Vol.E92-D, No.10, pp.2007–2015
(2009).

13

[19] Kusakari,K.: Static Dependency Pair Method in Rewriting
Systems for Functional Programs with Product, Algebraic
Data, and ML-Polymorphic Types, IEICE Transactions
on Information and Systems, Vol.E96-D, No.3, pp.472–480
(2013).

[20] Nipkow,N.: Higher-order Critical Pairs, In Proc. 6th An-
nual IEEE Symposium on Logic in Computer Science,
pp.342–349 (1991).

[21] Sakurai,T., Kusakari,K., Sakai,M., Sakabe,T. and Nishida,N.:
Usable Rules and Labeling Product-Typed Terms for De-
pendency Pair Method in Simply-Typed Term Rewriting
Systems, IEICE Transactions on Information and Systems,
Vol.J90-D, No.4, pp.978–989 (2007). (in Japanese)

[22] Suzuki,S., Kusakari,K., Blanqui,F.: Argument Filterings
and Usable Rules in Higher-Order Rewrite Systems, IPSJ
Transactions on Programming, Vol.4, No.2, pp.1-12 (2011).

[23] Tait,W.W.: Intensional Interpretation of Functionals of Fi-
nite Type. Journal of Symbolic Logic 32, pp.198–212 (1967).

[24] Terese: Term Rewriting Systems, Cambridge Tracts in
Theoretical Computer Science, Vol. 55, Cambridge Univer-
sity Press (2003).

